多芯片模块基板金属化层失效机理研究

Mansur Rastani
{"title":"多芯片模块基板金属化层失效机理研究","authors":"Mansur Rastani","doi":"10.1115/imece1997-0703","DOIUrl":null,"url":null,"abstract":"\n The work described in this paper concentrates primarily on the multichip module type D. In MCM-D technologies, the interlayer vias have been identified as potential failure sites due to fatigue caused by temperature cycling and the CTE mismatch between the dielectric and metal layers. The selected model for this study uses an MCM-D structure, implementing aluminum-silicon (Al-Si) metallization layers separated by a silicon dioxide (SiO2) interlayer dielectric.\n A 3-D finite element analysis has performed on the model to determine the effect of accelerated temperature cycling and thermal shock. The resulting non-linear, elasto-plastic stress-strain response was obtained, under the von-Mises yield criterion, using PATRAN code. The fatigue life of the via was then estimated and compared with the experimental results.","PeriodicalId":104058,"journal":{"name":"Composites and Functionally Graded Materials","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Failure Mechanism of Metallization Layer of a Multichip Module Substrate\",\"authors\":\"Mansur Rastani\",\"doi\":\"10.1115/imece1997-0703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The work described in this paper concentrates primarily on the multichip module type D. In MCM-D technologies, the interlayer vias have been identified as potential failure sites due to fatigue caused by temperature cycling and the CTE mismatch between the dielectric and metal layers. The selected model for this study uses an MCM-D structure, implementing aluminum-silicon (Al-Si) metallization layers separated by a silicon dioxide (SiO2) interlayer dielectric.\\n A 3-D finite element analysis has performed on the model to determine the effect of accelerated temperature cycling and thermal shock. The resulting non-linear, elasto-plastic stress-strain response was obtained, under the von-Mises yield criterion, using PATRAN code. The fatigue life of the via was then estimated and compared with the experimental results.\",\"PeriodicalId\":104058,\"journal\":{\"name\":\"Composites and Functionally Graded Materials\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites and Functionally Graded Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1997-0703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites and Functionally Graded Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1997-0703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文所描述的工作主要集中在多芯片模块d型。在MCM-D技术中,由于温度循环和介电层和金属层之间的CTE不匹配引起的疲劳,层间通孔已被确定为潜在的故障点。本研究选择的模型使用MCM-D结构,实现由二氧化硅(SiO2)层间介质分隔的铝硅(Al-Si)金属化层。对该模型进行了三维有限元分析,以确定加速温度循环和热冲击的影响。在von-Mises屈服准则下,使用PATRAN代码获得了非线性弹塑性应力-应变响应。然后估计了通孔的疲劳寿命,并与实验结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Failure Mechanism of Metallization Layer of a Multichip Module Substrate
The work described in this paper concentrates primarily on the multichip module type D. In MCM-D technologies, the interlayer vias have been identified as potential failure sites due to fatigue caused by temperature cycling and the CTE mismatch between the dielectric and metal layers. The selected model for this study uses an MCM-D structure, implementing aluminum-silicon (Al-Si) metallization layers separated by a silicon dioxide (SiO2) interlayer dielectric. A 3-D finite element analysis has performed on the model to determine the effect of accelerated temperature cycling and thermal shock. The resulting non-linear, elasto-plastic stress-strain response was obtained, under the von-Mises yield criterion, using PATRAN code. The fatigue life of the via was then estimated and compared with the experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信