{"title":"为工作负载驱动协同设计开发量子工作负载","authors":"A. Matsuura","doi":"10.1145/3569052.3578906","DOIUrl":null,"url":null,"abstract":"Quantum computing offers the future promise of solving problems that are intractable for classical computers today. However, as an entirely new kind of computational device, we must learn how to best develop useful workloads. Today's small workloads serve the dual purpose that they can also be used to learn how to design a better quantum computing system architecture. At Intel Labs, we develop small application-oriented workloads and use them to drive research into the design of a scalable quantum computing system architecture. We run these small workloads on the small systems of qubits that we have today to understand what is required from the system architecture to run them efficiently and accurately on real qubits. In this presentation, I will give examples of quantum workload-driven co-design and what we have learned from this type of research.","PeriodicalId":169581,"journal":{"name":"Proceedings of the 2023 International Symposium on Physical Design","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing Quantum Workloads for Workload-Driven Co-design\",\"authors\":\"A. Matsuura\",\"doi\":\"10.1145/3569052.3578906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computing offers the future promise of solving problems that are intractable for classical computers today. However, as an entirely new kind of computational device, we must learn how to best develop useful workloads. Today's small workloads serve the dual purpose that they can also be used to learn how to design a better quantum computing system architecture. At Intel Labs, we develop small application-oriented workloads and use them to drive research into the design of a scalable quantum computing system architecture. We run these small workloads on the small systems of qubits that we have today to understand what is required from the system architecture to run them efficiently and accurately on real qubits. In this presentation, I will give examples of quantum workload-driven co-design and what we have learned from this type of research.\",\"PeriodicalId\":169581,\"journal\":{\"name\":\"Proceedings of the 2023 International Symposium on Physical Design\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 International Symposium on Physical Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3569052.3578906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 International Symposium on Physical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569052.3578906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Developing Quantum Workloads for Workload-Driven Co-design
Quantum computing offers the future promise of solving problems that are intractable for classical computers today. However, as an entirely new kind of computational device, we must learn how to best develop useful workloads. Today's small workloads serve the dual purpose that they can also be used to learn how to design a better quantum computing system architecture. At Intel Labs, we develop small application-oriented workloads and use them to drive research into the design of a scalable quantum computing system architecture. We run these small workloads on the small systems of qubits that we have today to understand what is required from the system architecture to run them efficiently and accurately on real qubits. In this presentation, I will give examples of quantum workload-driven co-design and what we have learned from this type of research.