Дмитрий Люков, D. Lyukov, А. Крылов, A. Krylov, В.А. Лукшин, V. Lukshin
{"title":"基于反卷积的CT脑灌注的全广义变分法","authors":"Дмитрий Люков, D. Lyukov, А. Крылов, A. Krylov, В.А. Лукшин, V. Lukshin","doi":"10.30987/graphicon-2019-2-136-139","DOIUrl":null,"url":null,"abstract":"Deconvolution-based method for image analysis of cerebral blood perfusion computed tomography has been suggested. This analysis is the important part of diagnostics of ischemic stroke. The method is based on total generalized variation regularization algorithm. The algorithm was tested with generated synthetic data and clinical data. Proposed algorithm was compared with singular value decomposition method using Tikhonov regularization and with total variation based deconvolution method. It was shown that the suggested algorithm gives better results than these methods. The proposed algorithm combines both deconvolution and denoising processes, so results are more noisy resistant. It can allow to use lower radiation dose.","PeriodicalId":409819,"journal":{"name":"GraphiCon'2019 Proceedings. Volume 2","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Total Generalized Variation Method for Deconvolution-based CT Brain Perfusion\",\"authors\":\"Дмитрий Люков, D. Lyukov, А. Крылов, A. Krylov, В.А. Лукшин, V. Lukshin\",\"doi\":\"10.30987/graphicon-2019-2-136-139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deconvolution-based method for image analysis of cerebral blood perfusion computed tomography has been suggested. This analysis is the important part of diagnostics of ischemic stroke. The method is based on total generalized variation regularization algorithm. The algorithm was tested with generated synthetic data and clinical data. Proposed algorithm was compared with singular value decomposition method using Tikhonov regularization and with total variation based deconvolution method. It was shown that the suggested algorithm gives better results than these methods. The proposed algorithm combines both deconvolution and denoising processes, so results are more noisy resistant. It can allow to use lower radiation dose.\",\"PeriodicalId\":409819,\"journal\":{\"name\":\"GraphiCon'2019 Proceedings. Volume 2\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GraphiCon'2019 Proceedings. Volume 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30987/graphicon-2019-2-136-139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GraphiCon'2019 Proceedings. Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/graphicon-2019-2-136-139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Total Generalized Variation Method for Deconvolution-based CT Brain Perfusion
Deconvolution-based method for image analysis of cerebral blood perfusion computed tomography has been suggested. This analysis is the important part of diagnostics of ischemic stroke. The method is based on total generalized variation regularization algorithm. The algorithm was tested with generated synthetic data and clinical data. Proposed algorithm was compared with singular value decomposition method using Tikhonov regularization and with total variation based deconvolution method. It was shown that the suggested algorithm gives better results than these methods. The proposed algorithm combines both deconvolution and denoising processes, so results are more noisy resistant. It can allow to use lower radiation dose.