基于反卷积的CT脑灌注的全广义变分法

Дмитрий Люков, D. Lyukov, А. Крылов, A. Krylov, В.А. Лукшин, V. Lukshin
{"title":"基于反卷积的CT脑灌注的全广义变分法","authors":"Дмитрий Люков, D. Lyukov, А. Крылов, A. Krylov, В.А. Лукшин, V. Lukshin","doi":"10.30987/graphicon-2019-2-136-139","DOIUrl":null,"url":null,"abstract":"Deconvolution-based method for image analysis of cerebral blood perfusion computed tomography has been suggested. This analysis is the important part of diagnostics of ischemic stroke. The method is based on total generalized variation regularization algorithm. The algorithm was tested with generated synthetic data and clinical data. Proposed algorithm was compared with singular value decomposition method using Tikhonov regularization and with total variation based deconvolution method. It was shown that the suggested algorithm gives better results than these methods. The proposed algorithm combines both deconvolution and denoising processes, so results are more noisy resistant. It can allow to use lower radiation dose.","PeriodicalId":409819,"journal":{"name":"GraphiCon'2019 Proceedings. Volume 2","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Total Generalized Variation Method for Deconvolution-based CT Brain Perfusion\",\"authors\":\"Дмитрий Люков, D. Lyukov, А. Крылов, A. Krylov, В.А. Лукшин, V. Lukshin\",\"doi\":\"10.30987/graphicon-2019-2-136-139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deconvolution-based method for image analysis of cerebral blood perfusion computed tomography has been suggested. This analysis is the important part of diagnostics of ischemic stroke. The method is based on total generalized variation regularization algorithm. The algorithm was tested with generated synthetic data and clinical data. Proposed algorithm was compared with singular value decomposition method using Tikhonov regularization and with total variation based deconvolution method. It was shown that the suggested algorithm gives better results than these methods. The proposed algorithm combines both deconvolution and denoising processes, so results are more noisy resistant. It can allow to use lower radiation dose.\",\"PeriodicalId\":409819,\"journal\":{\"name\":\"GraphiCon'2019 Proceedings. Volume 2\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GraphiCon'2019 Proceedings. Volume 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30987/graphicon-2019-2-136-139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GraphiCon'2019 Proceedings. Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/graphicon-2019-2-136-139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于反卷积的脑血流灌注计算机断层图像分析方法。该分析是缺血性脑卒中诊断的重要组成部分。该方法基于全广义变分正则化算法。用生成的合成数据和临床数据对算法进行了测试。将该算法与基于Tikhonov正则化的奇异值分解方法和基于全变分的反卷积方法进行了比较。实验结果表明,本文提出的算法比上述方法具有更好的效果。该算法结合了反卷积和去噪两种处理方法,因此结果具有更好的抗噪性。它可以允许使用较低的辐射剂量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Total Generalized Variation Method for Deconvolution-based CT Brain Perfusion
Deconvolution-based method for image analysis of cerebral blood perfusion computed tomography has been suggested. This analysis is the important part of diagnostics of ischemic stroke. The method is based on total generalized variation regularization algorithm. The algorithm was tested with generated synthetic data and clinical data. Proposed algorithm was compared with singular value decomposition method using Tikhonov regularization and with total variation based deconvolution method. It was shown that the suggested algorithm gives better results than these methods. The proposed algorithm combines both deconvolution and denoising processes, so results are more noisy resistant. It can allow to use lower radiation dose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信