{"title":"局部鞅的视觉分类","authors":"H. Hulley, E. Platen","doi":"10.2139/ssrn.2175896","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of when a local martingale is a martingale or a universally integrable martingale, for the case of time-homogeneous scalar diffusions. Necessary and suffcient conditions of a geometric nature are obtained for answering this question. These results are widely applicable to problems in stochastic finance. For example, in order to apply risk-neutral pricing, one must first check that the chosen density process for an equivalent change of probability measure is in fact a martingale. If not, risk-neutral pricing is infeasible. Furthermore, even if the density process is a martingale, the possibility remains that the discounted price of some security could be a strict local martingale under the equivalent risk-neutral probability measure. In this case, well-known identities for option prices, such as put-call parity, may fail. Using our results, we examine a number of basic asset price models, and identify those that suffer from the above-mentioned difficulties.","PeriodicalId":170864,"journal":{"name":"PSN: International Finance & Investment (Topic)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Visual Classification of Local Martingales\",\"authors\":\"H. Hulley, E. Platen\",\"doi\":\"10.2139/ssrn.2175896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of when a local martingale is a martingale or a universally integrable martingale, for the case of time-homogeneous scalar diffusions. Necessary and suffcient conditions of a geometric nature are obtained for answering this question. These results are widely applicable to problems in stochastic finance. For example, in order to apply risk-neutral pricing, one must first check that the chosen density process for an equivalent change of probability measure is in fact a martingale. If not, risk-neutral pricing is infeasible. Furthermore, even if the density process is a martingale, the possibility remains that the discounted price of some security could be a strict local martingale under the equivalent risk-neutral probability measure. In this case, well-known identities for option prices, such as put-call parity, may fail. Using our results, we examine a number of basic asset price models, and identify those that suffer from the above-mentioned difficulties.\",\"PeriodicalId\":170864,\"journal\":{\"name\":\"PSN: International Finance & Investment (Topic)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: International Finance & Investment (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2175896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: International Finance & Investment (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2175896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper considers the problem of when a local martingale is a martingale or a universally integrable martingale, for the case of time-homogeneous scalar diffusions. Necessary and suffcient conditions of a geometric nature are obtained for answering this question. These results are widely applicable to problems in stochastic finance. For example, in order to apply risk-neutral pricing, one must first check that the chosen density process for an equivalent change of probability measure is in fact a martingale. If not, risk-neutral pricing is infeasible. Furthermore, even if the density process is a martingale, the possibility remains that the discounted price of some security could be a strict local martingale under the equivalent risk-neutral probability measure. In this case, well-known identities for option prices, such as put-call parity, may fail. Using our results, we examine a number of basic asset price models, and identify those that suffer from the above-mentioned difficulties.