通过动态控制复制扩展隐式并行性

Michael A. Bauer, Wonchan Lee, Elliott Slaughter, Zhihao Jia, M. D. Renzo, Manolis Papadakis, G. Shipman, P. McCormick, M. Garland, A. Aiken
{"title":"通过动态控制复制扩展隐式并行性","authors":"Michael A. Bauer, Wonchan Lee, Elliott Slaughter, Zhihao Jia, M. D. Renzo, Manolis Papadakis, G. Shipman, P. McCormick, M. Garland, A. Aiken","doi":"10.1145/3437801.3441587","DOIUrl":null,"url":null,"abstract":"We present dynamic control replication, a run-time program analysis that enables scalable execution of implicitly parallel programs on large machines through a distributed and efficient dynamic dependence analysis. Dynamic control replication distributes dependence analysis by executing multiple copies of an implicitly parallel program while ensuring that they still collectively behave as a single execution. By distributing and parallelizing the dependence analysis, dynamic control replication supports efficient, on-the-fly computation of dependences for programs with arbitrary control flow at scale. We describe an asymptotically scalable algorithm for implementing dynamic control replication that maintains the sequential semantics of implicitly parallel programs. An implementation of dynamic control replication in the Legion runtime delivers the same programmer productivity as writing in other implicitly parallel programming models, such as Dask or TensorFlow, while providing better performance (11.4X and 14.9X respectively in our experiments), and scalability to hundreds of nodes. We also show that dynamic control replication provides good absolute performance and scaling for HPC applications, competitive in many cases with explicitly parallel programming systems.","PeriodicalId":124852,"journal":{"name":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Scaling implicit parallelism via dynamic control replication\",\"authors\":\"Michael A. Bauer, Wonchan Lee, Elliott Slaughter, Zhihao Jia, M. D. Renzo, Manolis Papadakis, G. Shipman, P. McCormick, M. Garland, A. Aiken\",\"doi\":\"10.1145/3437801.3441587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present dynamic control replication, a run-time program analysis that enables scalable execution of implicitly parallel programs on large machines through a distributed and efficient dynamic dependence analysis. Dynamic control replication distributes dependence analysis by executing multiple copies of an implicitly parallel program while ensuring that they still collectively behave as a single execution. By distributing and parallelizing the dependence analysis, dynamic control replication supports efficient, on-the-fly computation of dependences for programs with arbitrary control flow at scale. We describe an asymptotically scalable algorithm for implementing dynamic control replication that maintains the sequential semantics of implicitly parallel programs. An implementation of dynamic control replication in the Legion runtime delivers the same programmer productivity as writing in other implicitly parallel programming models, such as Dask or TensorFlow, while providing better performance (11.4X and 14.9X respectively in our experiments), and scalability to hundreds of nodes. We also show that dynamic control replication provides good absolute performance and scaling for HPC applications, competitive in many cases with explicitly parallel programming systems.\",\"PeriodicalId\":124852,\"journal\":{\"name\":\"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3437801.3441587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437801.3441587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们提出了动态控制复制,这是一种运行时程序分析,通过分布式和高效的动态依赖分析,可以在大型机器上实现隐式并行程序的可扩展执行。动态控制复制通过执行隐式并行程序的多个副本来分发依赖性分析,同时确保它们仍然作为单个执行一起运行。通过分布和并行化依赖性分析,动态控制复制支持对具有任意规模控制流的程序进行高效、即时的依赖性计算。我们描述了一种渐进可扩展算法,用于实现动态控制复制,以保持隐式并行程序的顺序语义。在Legion运行时中实现动态控制复制提供了与在其他隐式并行编程模型(如Dask或TensorFlow)中编写相同的程序员生产力,同时提供更好的性能(在我们的实验中分别为11.4X和14.9X),以及数百个节点的可扩展性。我们还表明,动态控制复制为HPC应用程序提供了良好的绝对性能和可扩展性,在许多情况下与显式并行编程系统竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaling implicit parallelism via dynamic control replication
We present dynamic control replication, a run-time program analysis that enables scalable execution of implicitly parallel programs on large machines through a distributed and efficient dynamic dependence analysis. Dynamic control replication distributes dependence analysis by executing multiple copies of an implicitly parallel program while ensuring that they still collectively behave as a single execution. By distributing and parallelizing the dependence analysis, dynamic control replication supports efficient, on-the-fly computation of dependences for programs with arbitrary control flow at scale. We describe an asymptotically scalable algorithm for implementing dynamic control replication that maintains the sequential semantics of implicitly parallel programs. An implementation of dynamic control replication in the Legion runtime delivers the same programmer productivity as writing in other implicitly parallel programming models, such as Dask or TensorFlow, while providing better performance (11.4X and 14.9X respectively in our experiments), and scalability to hundreds of nodes. We also show that dynamic control replication provides good absolute performance and scaling for HPC applications, competitive in many cases with explicitly parallel programming systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信