Eric Yao, Rory Liao, M. Shalaginov, TingyingHelen Zeng
{"title":"基于胸部x线扫描的不同模型预测COVID-19严重程度的比较","authors":"Eric Yao, Rory Liao, M. Shalaginov, TingyingHelen Zeng","doi":"10.1109/IECBES54088.2022.10079504","DOIUrl":null,"url":null,"abstract":"The global outbreak of COVID-19 has resulted in a surge in patients in hospitals and intensive care units. This unprecedented demand for medical resources has severely burdened healthcare systems. Chest X-Ray (CXR) images can be used by hospitals and small clinics to predict COVID-19 severity to maximize efficiency and allot medical resources to patients with severe COVID-19. This research compares the accuracies of four convolutional neural network models in predicting COVID-19 severity using chest X-Rays images. The CNN models include VGG-16, ResNet 50, Xception, and a custom CNN model. Through the comparison, VGG-16 had the highest COVID-19 severity prediction accuracy of all four models, with 95.56% testing accuracy and 88.33% validation accuracy. Using a machine learning method, disease progression can be tracked more accurately and help prioritize patients to ensure effective and timely treatment.","PeriodicalId":146681,"journal":{"name":"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Different Models in Predicting COVID-19 Severity Based on Chest X-Ray Scans\",\"authors\":\"Eric Yao, Rory Liao, M. Shalaginov, TingyingHelen Zeng\",\"doi\":\"10.1109/IECBES54088.2022.10079504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global outbreak of COVID-19 has resulted in a surge in patients in hospitals and intensive care units. This unprecedented demand for medical resources has severely burdened healthcare systems. Chest X-Ray (CXR) images can be used by hospitals and small clinics to predict COVID-19 severity to maximize efficiency and allot medical resources to patients with severe COVID-19. This research compares the accuracies of four convolutional neural network models in predicting COVID-19 severity using chest X-Rays images. The CNN models include VGG-16, ResNet 50, Xception, and a custom CNN model. Through the comparison, VGG-16 had the highest COVID-19 severity prediction accuracy of all four models, with 95.56% testing accuracy and 88.33% validation accuracy. Using a machine learning method, disease progression can be tracked more accurately and help prioritize patients to ensure effective and timely treatment.\",\"PeriodicalId\":146681,\"journal\":{\"name\":\"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECBES54088.2022.10079504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECBES54088.2022.10079504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Different Models in Predicting COVID-19 Severity Based on Chest X-Ray Scans
The global outbreak of COVID-19 has resulted in a surge in patients in hospitals and intensive care units. This unprecedented demand for medical resources has severely burdened healthcare systems. Chest X-Ray (CXR) images can be used by hospitals and small clinics to predict COVID-19 severity to maximize efficiency and allot medical resources to patients with severe COVID-19. This research compares the accuracies of four convolutional neural network models in predicting COVID-19 severity using chest X-Rays images. The CNN models include VGG-16, ResNet 50, Xception, and a custom CNN model. Through the comparison, VGG-16 had the highest COVID-19 severity prediction accuracy of all four models, with 95.56% testing accuracy and 88.33% validation accuracy. Using a machine learning method, disease progression can be tracked more accurately and help prioritize patients to ensure effective and timely treatment.