基于光谱空间联合特征的卷积神经网络高光谱图像分类

Diganta Kumar Pathak, S. Kalita, D. K. Bhattacharya
{"title":"基于光谱空间联合特征的卷积神经网络高光谱图像分类","authors":"Diganta Kumar Pathak, S. Kalita, D. K. Bhattacharya","doi":"10.1002/cpe.6547","DOIUrl":null,"url":null,"abstract":"Hyperspectral sensor generates huge datasets which conveys abundance of information. However, it poses many challenges in the analysis and interpretation of these data. Deep networks like VGG16, VGG19 are difficult to directly apply for hyperspectral image (HSI) classification because of its higher number of layers which in turn requires high level of system resources. This article suggests a novel framework with lesser number of layers for hyperspectral image classification (HSIC) that takes into account spectral‐spatial context sensitivity of HSI, which focuses on enhancing the discriminating capability of HSIC. The model uses available spectral feature as well as spatial contexts of HSI and consecutively learn the distinctive features. A small training set has been used to optimize the network parameters while the overfitting problem is alleviated using the validation set. Regularization has been performed using batch normalization (BN) layer after each convolution layer. The cost of the model is measured in terms of training and testing time duration under the same platform, which has further been compared with some ensemble learning methods, SVM and other three recent state‐of‐the‐art methods. Experimental results establish that the proposed model performs very well with the three benchmark datasets: Indian Pines, Salinas and University of Pavia, which mostly contain land cover of agriculture, forest, soil, rural, and urban area.","PeriodicalId":214565,"journal":{"name":"Concurr. Comput. Pract. Exp.","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spectral spatial joint feature based convolution neural network for hyperspectral image classification\",\"authors\":\"Diganta Kumar Pathak, S. Kalita, D. K. Bhattacharya\",\"doi\":\"10.1002/cpe.6547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral sensor generates huge datasets which conveys abundance of information. However, it poses many challenges in the analysis and interpretation of these data. Deep networks like VGG16, VGG19 are difficult to directly apply for hyperspectral image (HSI) classification because of its higher number of layers which in turn requires high level of system resources. This article suggests a novel framework with lesser number of layers for hyperspectral image classification (HSIC) that takes into account spectral‐spatial context sensitivity of HSI, which focuses on enhancing the discriminating capability of HSIC. The model uses available spectral feature as well as spatial contexts of HSI and consecutively learn the distinctive features. A small training set has been used to optimize the network parameters while the overfitting problem is alleviated using the validation set. Regularization has been performed using batch normalization (BN) layer after each convolution layer. The cost of the model is measured in terms of training and testing time duration under the same platform, which has further been compared with some ensemble learning methods, SVM and other three recent state‐of‐the‐art methods. Experimental results establish that the proposed model performs very well with the three benchmark datasets: Indian Pines, Salinas and University of Pavia, which mostly contain land cover of agriculture, forest, soil, rural, and urban area.\",\"PeriodicalId\":214565,\"journal\":{\"name\":\"Concurr. Comput. Pract. Exp.\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurr. Comput. Pract. Exp.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cpe.6547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurr. Comput. Pract. Exp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cpe.6547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral spatial joint feature based convolution neural network for hyperspectral image classification
Hyperspectral sensor generates huge datasets which conveys abundance of information. However, it poses many challenges in the analysis and interpretation of these data. Deep networks like VGG16, VGG19 are difficult to directly apply for hyperspectral image (HSI) classification because of its higher number of layers which in turn requires high level of system resources. This article suggests a novel framework with lesser number of layers for hyperspectral image classification (HSIC) that takes into account spectral‐spatial context sensitivity of HSI, which focuses on enhancing the discriminating capability of HSIC. The model uses available spectral feature as well as spatial contexts of HSI and consecutively learn the distinctive features. A small training set has been used to optimize the network parameters while the overfitting problem is alleviated using the validation set. Regularization has been performed using batch normalization (BN) layer after each convolution layer. The cost of the model is measured in terms of training and testing time duration under the same platform, which has further been compared with some ensemble learning methods, SVM and other three recent state‐of‐the‐art methods. Experimental results establish that the proposed model performs very well with the three benchmark datasets: Indian Pines, Salinas and University of Pavia, which mostly contain land cover of agriculture, forest, soil, rural, and urban area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信