稀疏记录和回放与控制调度

Christopher Lidbury, A. Donaldson
{"title":"稀疏记录和回放与控制调度","authors":"Christopher Lidbury, A. Donaldson","doi":"10.1145/3314221.3314635","DOIUrl":null,"url":null,"abstract":"Modern applications include many sources of nondeterminism, e.g. due to concurrency, signals, and system calls that interact with the external environment. Finding and reproducing bugs in the presence of this nondeterminism has been the subject of much prior work in three main areas: (1) controlled concurrency-testing, where a custom scheduler replaces the OS scheduler to find subtle bugs; (2) record and replay, where sources of nondeterminism are captured and logged so that a failing execution can be replayed for debugging purposes; and (3) dynamic analysis for the detection of data races. We present a dynamic analysis tool for C++ applications, tsan11rec, which brings these strands of work together by integrating controlled concurrency testing and record and replay into the tsan11 framework for C++11 data race detection. Our novel twist on record and replay is a sparse approach, where the sources of nondeterminism to record can be configured per application. We show that our approach is effective at finding subtle concurrency bugs in small applications; is competitive in terms of performance with the state-of-the-art record and replay tool rr on larger applications; succeeds (due to our sparse approach) in replaying the I/O-intensive Zandronum and QuakeSpasm video games, which are out of scope for rr; but (due to limitations of our sparse approach) cannot faithfully replay applications where memory layout nondeterminism significantly affects application behaviour.","PeriodicalId":441774,"journal":{"name":"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"91 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Sparse record and replay with controlled scheduling\",\"authors\":\"Christopher Lidbury, A. Donaldson\",\"doi\":\"10.1145/3314221.3314635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern applications include many sources of nondeterminism, e.g. due to concurrency, signals, and system calls that interact with the external environment. Finding and reproducing bugs in the presence of this nondeterminism has been the subject of much prior work in three main areas: (1) controlled concurrency-testing, where a custom scheduler replaces the OS scheduler to find subtle bugs; (2) record and replay, where sources of nondeterminism are captured and logged so that a failing execution can be replayed for debugging purposes; and (3) dynamic analysis for the detection of data races. We present a dynamic analysis tool for C++ applications, tsan11rec, which brings these strands of work together by integrating controlled concurrency testing and record and replay into the tsan11 framework for C++11 data race detection. Our novel twist on record and replay is a sparse approach, where the sources of nondeterminism to record can be configured per application. We show that our approach is effective at finding subtle concurrency bugs in small applications; is competitive in terms of performance with the state-of-the-art record and replay tool rr on larger applications; succeeds (due to our sparse approach) in replaying the I/O-intensive Zandronum and QuakeSpasm video games, which are out of scope for rr; but (due to limitations of our sparse approach) cannot faithfully replay applications where memory layout nondeterminism significantly affects application behaviour.\",\"PeriodicalId\":441774,\"journal\":{\"name\":\"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"91 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3314221.3314635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314221.3314635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

现代应用程序包含许多不确定性的来源,例如,由于并发性、信号和与外部环境交互的系统调用。在存在这种不确定性的情况下发现和重现bug一直是三个主要领域的许多先前工作的主题:(1)受控并发测试,其中自定义调度器取代操作系统调度器以发现细微的bug;(2)记录和重播,捕获和记录不确定性的来源,以便在调试时重播失败的执行;(3)数据争用检测的动态分析。我们为c++应用程序提供了一个动态分析工具tsan11rec,它通过将受控并发测试、记录和重放集成到tsan11框架中,将这些工作结合在一起,用于c++ 11数据竞争检测。我们在记录和重放方面的新颖之处是一种稀疏方法,在这种方法中,记录的不确定性源可以根据每个应用程序进行配置。我们证明了我们的方法在发现小型应用程序中微妙的并发错误方面是有效的;在性能方面与大型应用程序中最先进的记录和重播工具rr具有竞争力;成功地(由于我们的稀疏方法)重放I/ o密集型Zandronum和QuakeSpasm视频游戏,这超出了rr的范围;但是(由于我们的稀疏方法的局限性)不能忠实地重放内存布局不确定性严重影响应用程序行为的应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse record and replay with controlled scheduling
Modern applications include many sources of nondeterminism, e.g. due to concurrency, signals, and system calls that interact with the external environment. Finding and reproducing bugs in the presence of this nondeterminism has been the subject of much prior work in three main areas: (1) controlled concurrency-testing, where a custom scheduler replaces the OS scheduler to find subtle bugs; (2) record and replay, where sources of nondeterminism are captured and logged so that a failing execution can be replayed for debugging purposes; and (3) dynamic analysis for the detection of data races. We present a dynamic analysis tool for C++ applications, tsan11rec, which brings these strands of work together by integrating controlled concurrency testing and record and replay into the tsan11 framework for C++11 data race detection. Our novel twist on record and replay is a sparse approach, where the sources of nondeterminism to record can be configured per application. We show that our approach is effective at finding subtle concurrency bugs in small applications; is competitive in terms of performance with the state-of-the-art record and replay tool rr on larger applications; succeeds (due to our sparse approach) in replaying the I/O-intensive Zandronum and QuakeSpasm video games, which are out of scope for rr; but (due to limitations of our sparse approach) cannot faithfully replay applications where memory layout nondeterminism significantly affects application behaviour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信