{"title":"用模块化层次贝叶斯混合行为模型学习人的纵向控制行为","authors":"M. Eilers, C. Möbus","doi":"10.1109/IVS.2011.5940530","DOIUrl":null,"url":null,"abstract":"Modeling drivers' behavior is believed to be essential for the rapid prototyping of error-compensating assistance systems. Various authors proposed control-theoretic and production-system models. These models are handcrafted in a top-down software engineering process. Here we propose a machine-learning alternative by estimating stochastic driver models from behavior traces. They are more robust than their non-stochastic predecessors. In this paper we present a Bayesian Autonomous Driver Mixture-of-Behaviors (BAD MoB) model for the longitudinal control of human drivers in an inner-city traffic scenario. It is learnt on the basis of multivariate time-series obtained in simulator studies. Percepts relevant for longitudinal control were included in the model by a structure-learning method using Bayesian information criteria. Besides mimicking human driver behavior we suggest using the model for prototyping intelligent assistance systems with human-like behavior.","PeriodicalId":117811,"journal":{"name":"2011 IEEE Intelligent Vehicles Symposium (IV)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Learning the human longitudinal control behavior with a modular hierarchical Bayesian Mixture-of-Behaviors model\",\"authors\":\"M. Eilers, C. Möbus\",\"doi\":\"10.1109/IVS.2011.5940530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling drivers' behavior is believed to be essential for the rapid prototyping of error-compensating assistance systems. Various authors proposed control-theoretic and production-system models. These models are handcrafted in a top-down software engineering process. Here we propose a machine-learning alternative by estimating stochastic driver models from behavior traces. They are more robust than their non-stochastic predecessors. In this paper we present a Bayesian Autonomous Driver Mixture-of-Behaviors (BAD MoB) model for the longitudinal control of human drivers in an inner-city traffic scenario. It is learnt on the basis of multivariate time-series obtained in simulator studies. Percepts relevant for longitudinal control were included in the model by a structure-learning method using Bayesian information criteria. Besides mimicking human driver behavior we suggest using the model for prototyping intelligent assistance systems with human-like behavior.\",\"PeriodicalId\":117811,\"journal\":{\"name\":\"2011 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2011.5940530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2011.5940530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning the human longitudinal control behavior with a modular hierarchical Bayesian Mixture-of-Behaviors model
Modeling drivers' behavior is believed to be essential for the rapid prototyping of error-compensating assistance systems. Various authors proposed control-theoretic and production-system models. These models are handcrafted in a top-down software engineering process. Here we propose a machine-learning alternative by estimating stochastic driver models from behavior traces. They are more robust than their non-stochastic predecessors. In this paper we present a Bayesian Autonomous Driver Mixture-of-Behaviors (BAD MoB) model for the longitudinal control of human drivers in an inner-city traffic scenario. It is learnt on the basis of multivariate time-series obtained in simulator studies. Percepts relevant for longitudinal control were included in the model by a structure-learning method using Bayesian information criteria. Besides mimicking human driver behavior we suggest using the model for prototyping intelligent assistance systems with human-like behavior.