基于生成对抗神经网络的信用卡数据不平衡过采样技术

S. El Kafhali, Mohammed Tayebi
{"title":"基于生成对抗神经网络的信用卡数据不平衡过采样技术","authors":"S. El Kafhali, Mohammed Tayebi","doi":"10.1109/SLAAI-ICAI56923.2022.10002630","DOIUrl":null,"url":null,"abstract":"The imbalanced dataset is a challenging issue in many classification tasks. Because it leads a machine learning algorithm to poor generalization and performance. The imbalanced dataset is characterized as having a huge difference between the number of samples that contain each class. Unfortunately, various resampling methods are proposed to solve this problem. In our work, we target enhancing the handling of the imbalanced dataset using a new oversampling technique based on generative adversarial neural networks. Our method is benchmarked against the widely used oversampling technique including the synthetic minority oversampling technique (SMOTE), random oversampling technique (ROS), and the adaptive synthetic sampling approach(ADSYN). Additionally, three machine learning algorithms are used for evaluation. The outcome of our experiments on a real-world credit card dataset shows the strong ability of the proposed solution against the competitive oversampling techniques to overcome the imbalanced problem in the European credit card dataset.","PeriodicalId":308901,"journal":{"name":"2022 6th SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative Adversarial Neural Networks based Oversampling Technique for Imbalanced Credit Card Dataset\",\"authors\":\"S. El Kafhali, Mohammed Tayebi\",\"doi\":\"10.1109/SLAAI-ICAI56923.2022.10002630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The imbalanced dataset is a challenging issue in many classification tasks. Because it leads a machine learning algorithm to poor generalization and performance. The imbalanced dataset is characterized as having a huge difference between the number of samples that contain each class. Unfortunately, various resampling methods are proposed to solve this problem. In our work, we target enhancing the handling of the imbalanced dataset using a new oversampling technique based on generative adversarial neural networks. Our method is benchmarked against the widely used oversampling technique including the synthetic minority oversampling technique (SMOTE), random oversampling technique (ROS), and the adaptive synthetic sampling approach(ADSYN). Additionally, three machine learning algorithms are used for evaluation. The outcome of our experiments on a real-world credit card dataset shows the strong ability of the proposed solution against the competitive oversampling techniques to overcome the imbalanced problem in the European credit card dataset.\",\"PeriodicalId\":308901,\"journal\":{\"name\":\"2022 6th SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLAAI-ICAI56923.2022.10002630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLAAI-ICAI56923.2022.10002630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在许多分类任务中,数据集不平衡是一个具有挑战性的问题。因为它会导致机器学习算法的泛化和性能下降。不平衡数据集的特征是包含每个类的样本数量之间存在巨大差异。不幸的是,人们提出了各种重采样方法来解决这个问题。在我们的工作中,我们的目标是使用一种新的基于生成对抗神经网络的过采样技术来增强对不平衡数据集的处理。我们的方法对广泛使用的过采样技术进行了基准测试,包括合成少数过采样技术(SMOTE),随机过采样技术(ROS)和自适应合成采样方法(ADSYN)。此外,还使用了三种机器学习算法进行评估。我们在真实世界信用卡数据集上的实验结果表明,所提出的解决方案对竞争性过采样技术具有很强的能力,可以克服欧洲信用卡数据集中的不平衡问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative Adversarial Neural Networks based Oversampling Technique for Imbalanced Credit Card Dataset
The imbalanced dataset is a challenging issue in many classification tasks. Because it leads a machine learning algorithm to poor generalization and performance. The imbalanced dataset is characterized as having a huge difference between the number of samples that contain each class. Unfortunately, various resampling methods are proposed to solve this problem. In our work, we target enhancing the handling of the imbalanced dataset using a new oversampling technique based on generative adversarial neural networks. Our method is benchmarked against the widely used oversampling technique including the synthetic minority oversampling technique (SMOTE), random oversampling technique (ROS), and the adaptive synthetic sampling approach(ADSYN). Additionally, three machine learning algorithms are used for evaluation. The outcome of our experiments on a real-world credit card dataset shows the strong ability of the proposed solution against the competitive oversampling techniques to overcome the imbalanced problem in the European credit card dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信