认知无线网络中同步功率控制和信道分配的无悔学习

B. Latifa, Zhen-guo Gao, Sheng Liu
{"title":"认知无线网络中同步功率控制和信道分配的无悔学习","authors":"B. Latifa, Zhen-guo Gao, Sheng Liu","doi":"10.1109/COMCOMAP.2012.6154855","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a no-regret learning algorithm for an exact potential game that allows cognitive radio pairs to update their transmission powers and frequencies simultaneously. We show by simulations that the No-regret algorithm converges to a pure Nash equilibrium, and that it achieves similar performance with the traditional game theoretic framework, while requiring less knowledge about the game and less implementation overhead.","PeriodicalId":281865,"journal":{"name":"2012 Computing, Communications and Applications Conference","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"No-Regret learning for simultaneous power control and channel allocation in cognitive radio networks\",\"authors\":\"B. Latifa, Zhen-guo Gao, Sheng Liu\",\"doi\":\"10.1109/COMCOMAP.2012.6154855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate a no-regret learning algorithm for an exact potential game that allows cognitive radio pairs to update their transmission powers and frequencies simultaneously. We show by simulations that the No-regret algorithm converges to a pure Nash equilibrium, and that it achieves similar performance with the traditional game theoretic framework, while requiring less knowledge about the game and less implementation overhead.\",\"PeriodicalId\":281865,\"journal\":{\"name\":\"2012 Computing, Communications and Applications Conference\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Computing, Communications and Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMCOMAP.2012.6154855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Computing, Communications and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMCOMAP.2012.6154855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在本文中,我们研究了一种无遗憾学习算法,用于允许认知无线电对同时更新其发射功率和频率的精确潜在博弈。我们通过模拟表明,无悔算法收敛到一个纯纳什均衡,并且它与传统的博弈论框架达到了相似的性能,同时需要更少的游戏知识和更少的实现开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
No-Regret learning for simultaneous power control and channel allocation in cognitive radio networks
In this paper, we investigate a no-regret learning algorithm for an exact potential game that allows cognitive radio pairs to update their transmission powers and frequencies simultaneously. We show by simulations that the No-regret algorithm converges to a pure Nash equilibrium, and that it achieves similar performance with the traditional game theoretic framework, while requiring less knowledge about the game and less implementation overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信