长记忆半参数Whittle估计的Edgeworth展开式

L. Giraitis
{"title":"长记忆半参数Whittle估计的Edgeworth展开式","authors":"L. Giraitis","doi":"10.1214/AOS/1059655915","DOIUrl":null,"url":null,"abstract":"The semiparametric local Whittle or Gaussian estimate of the long memory parameter is known to have especially nice limiting distributional properties, being asymptotically normal with a limiting variance that is completely known. However in moderate samples the normal approximation may not be very good, so we consider a refined, Edgeworth, approximation, for both a tapered estimate, and the original untapered one. For the tapered estimate, our higher-order correction involves two terms, one of order 1/√m (where m is the bandwidth number in the estimation), the other a bias term, which increases in m; depending on the relative magnitude of the terms, one or the other may dominate, or they may balance. For the untapered estimate we obtain an expansion in which, for m increasing fast enough, the correction consists only of a bias term. We discuss applications of our expansions to improved statistical inference and bandwidth choice. We assume Gaussianity, but in other respects our assumptions seem mild.","PeriodicalId":437927,"journal":{"name":"STICERD: Econometrics (EM) (Topic)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Edgeworth Expansions for Semiparametric Whittle Estimation of Long Memory\",\"authors\":\"L. Giraitis\",\"doi\":\"10.1214/AOS/1059655915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The semiparametric local Whittle or Gaussian estimate of the long memory parameter is known to have especially nice limiting distributional properties, being asymptotically normal with a limiting variance that is completely known. However in moderate samples the normal approximation may not be very good, so we consider a refined, Edgeworth, approximation, for both a tapered estimate, and the original untapered one. For the tapered estimate, our higher-order correction involves two terms, one of order 1/√m (where m is the bandwidth number in the estimation), the other a bias term, which increases in m; depending on the relative magnitude of the terms, one or the other may dominate, or they may balance. For the untapered estimate we obtain an expansion in which, for m increasing fast enough, the correction consists only of a bias term. We discuss applications of our expansions to improved statistical inference and bandwidth choice. We assume Gaussianity, but in other respects our assumptions seem mild.\",\"PeriodicalId\":437927,\"journal\":{\"name\":\"STICERD: Econometrics (EM) (Topic)\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"STICERD: Econometrics (EM) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/AOS/1059655915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"STICERD: Econometrics (EM) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/AOS/1059655915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

已知长记忆参数的半参数局部惠特尔或高斯估计具有特别好的极限分布性质,具有完全已知的极限方差的渐近正态性。然而,在中等样本中,正态近似可能不是很好,因此我们考虑一个改进的Edgeworth近似,用于锥形估计和原始的非锥形估计。对于锥形估计,我们的高阶校正涉及两项,一项是1/√m(其中m是估计中的带宽数),另一项是偏置项,它随着m的增加而增加;根据条件的相对大小,一个或另一个可能占主导地位,或者它们可能平衡。对于非锥形估计,我们得到了一个展开式,其中,当m增长足够快时,校正仅由一个偏置项组成。我们讨论了我们的扩展在改进统计推断和带宽选择方面的应用。我们假设高斯性,但在其他方面我们的假设似乎温和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edgeworth Expansions for Semiparametric Whittle Estimation of Long Memory
The semiparametric local Whittle or Gaussian estimate of the long memory parameter is known to have especially nice limiting distributional properties, being asymptotically normal with a limiting variance that is completely known. However in moderate samples the normal approximation may not be very good, so we consider a refined, Edgeworth, approximation, for both a tapered estimate, and the original untapered one. For the tapered estimate, our higher-order correction involves two terms, one of order 1/√m (where m is the bandwidth number in the estimation), the other a bias term, which increases in m; depending on the relative magnitude of the terms, one or the other may dominate, or they may balance. For the untapered estimate we obtain an expansion in which, for m increasing fast enough, the correction consists only of a bias term. We discuss applications of our expansions to improved statistical inference and bandwidth choice. We assume Gaussianity, but in other respects our assumptions seem mild.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信