{"title":"大型风力机不同偏航控制策略的比较研究与分析","authors":"W. Farag, Manal El-Hosary, A. Kamel","doi":"10.1109/ACCS-PEIT.2017.8303031","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce three different nacelle yaw controllers that use distinct techniques and study their performances in improving the captured energy by the turbine. The first one is a carefully tuned Proportional-Integral-Differential (PID) controller with its simple design; the second one is a linguistic fuzzy logic controller with its intuitive flexible design; and the third one is a Model-Predictive-Controller (MPC) with its adaptive functionality. The control objective of the developed controllers is to effectively track the wind direction by the yaw motion of the turbine nacelle; and consequently to improve the energy capture. A comparative study and a thorough analysis among the three controllers' performances are carried out using extensive MATLAB/SIMULINK simulations.","PeriodicalId":187395,"journal":{"name":"2017 Intl Conf on Advanced Control Circuits Systems (ACCS) Systems & 2017 Intl Conf on New Paradigms in Electronics & Information Technology (PEIT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A comparative study and analysis of different yaw control strategies for large wind turbines\",\"authors\":\"W. Farag, Manal El-Hosary, A. Kamel\",\"doi\":\"10.1109/ACCS-PEIT.2017.8303031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce three different nacelle yaw controllers that use distinct techniques and study their performances in improving the captured energy by the turbine. The first one is a carefully tuned Proportional-Integral-Differential (PID) controller with its simple design; the second one is a linguistic fuzzy logic controller with its intuitive flexible design; and the third one is a Model-Predictive-Controller (MPC) with its adaptive functionality. The control objective of the developed controllers is to effectively track the wind direction by the yaw motion of the turbine nacelle; and consequently to improve the energy capture. A comparative study and a thorough analysis among the three controllers' performances are carried out using extensive MATLAB/SIMULINK simulations.\",\"PeriodicalId\":187395,\"journal\":{\"name\":\"2017 Intl Conf on Advanced Control Circuits Systems (ACCS) Systems & 2017 Intl Conf on New Paradigms in Electronics & Information Technology (PEIT)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Intl Conf on Advanced Control Circuits Systems (ACCS) Systems & 2017 Intl Conf on New Paradigms in Electronics & Information Technology (PEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACCS-PEIT.2017.8303031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Intl Conf on Advanced Control Circuits Systems (ACCS) Systems & 2017 Intl Conf on New Paradigms in Electronics & Information Technology (PEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACCS-PEIT.2017.8303031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparative study and analysis of different yaw control strategies for large wind turbines
In this paper, we introduce three different nacelle yaw controllers that use distinct techniques and study their performances in improving the captured energy by the turbine. The first one is a carefully tuned Proportional-Integral-Differential (PID) controller with its simple design; the second one is a linguistic fuzzy logic controller with its intuitive flexible design; and the third one is a Model-Predictive-Controller (MPC) with its adaptive functionality. The control objective of the developed controllers is to effectively track the wind direction by the yaw motion of the turbine nacelle; and consequently to improve the energy capture. A comparative study and a thorough analysis among the three controllers' performances are carried out using extensive MATLAB/SIMULINK simulations.