一种基于深度学习的高压输电线路鲁棒故障诊断方案

Sazzed Mahamud Khan, A. Shatil
{"title":"一种基于深度学习的高压输电线路鲁棒故障诊断方案","authors":"Sazzed Mahamud Khan, A. Shatil","doi":"10.53799/ajse.v21i2.204","DOIUrl":null,"url":null,"abstract":"The transmission lines repeatedly face an aggregation of shunt-faults and its impact in the real time system increases the vulnerability, damage in load, and line restoration cost. Fault detection in power transmission lines have become significantly crucial due to a rapid increase in number and length. Any kind of interruption or tripping in transmission lines can result in a massive failure over a large area, which necessitates the need of effective protection. The diagnosis of faults help in detecting and classifying transients that eventually make the protection of transmission lines convenient. In this paper, we propose a deep learning-enabled technique for the detection and classification of transmission line faults. The faulty information are extracted using Discrete Wavelet Transform (DWT) and fed into the multilayer perceptron classification model. The results indicate that the proposed approach is capable of accurately classifying and detecting faults in transmission line with high precision.","PeriodicalId":224436,"journal":{"name":"AIUB Journal of Science and Engineering (AJSE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust Fault Diagnosis Scheme using Deep Learning for High Voltage Transmission Line\",\"authors\":\"Sazzed Mahamud Khan, A. Shatil\",\"doi\":\"10.53799/ajse.v21i2.204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transmission lines repeatedly face an aggregation of shunt-faults and its impact in the real time system increases the vulnerability, damage in load, and line restoration cost. Fault detection in power transmission lines have become significantly crucial due to a rapid increase in number and length. Any kind of interruption or tripping in transmission lines can result in a massive failure over a large area, which necessitates the need of effective protection. The diagnosis of faults help in detecting and classifying transients that eventually make the protection of transmission lines convenient. In this paper, we propose a deep learning-enabled technique for the detection and classification of transmission line faults. The faulty information are extracted using Discrete Wavelet Transform (DWT) and fed into the multilayer perceptron classification model. The results indicate that the proposed approach is capable of accurately classifying and detecting faults in transmission line with high precision.\",\"PeriodicalId\":224436,\"journal\":{\"name\":\"AIUB Journal of Science and Engineering (AJSE)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIUB Journal of Science and Engineering (AJSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53799/ajse.v21i2.204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIUB Journal of Science and Engineering (AJSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53799/ajse.v21i2.204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

输电线路多次面临并联故障的聚集,其对实时系统的影响增加了系统的易损性、负载损伤和线路恢复成本。随着输电线路数量和长度的迅速增加,输电线路的故障检测变得尤为重要。输电线路的任何一种中断或跳闸都可能导致大面积的大规模故障,因此需要有效的保护措施。故障诊断有助于暂态检测和分类,最终为输电线路的保护提供方便。在本文中,我们提出了一种基于深度学习的输电线路故障检测和分类技术。采用离散小波变换(DWT)提取故障信息,并将其输入多层感知器分类模型。结果表明,该方法能够准确地对输电线路中的故障进行分类和检测,具有较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Fault Diagnosis Scheme using Deep Learning for High Voltage Transmission Line
The transmission lines repeatedly face an aggregation of shunt-faults and its impact in the real time system increases the vulnerability, damage in load, and line restoration cost. Fault detection in power transmission lines have become significantly crucial due to a rapid increase in number and length. Any kind of interruption or tripping in transmission lines can result in a massive failure over a large area, which necessitates the need of effective protection. The diagnosis of faults help in detecting and classifying transients that eventually make the protection of transmission lines convenient. In this paper, we propose a deep learning-enabled technique for the detection and classification of transmission line faults. The faulty information are extracted using Discrete Wavelet Transform (DWT) and fed into the multilayer perceptron classification model. The results indicate that the proposed approach is capable of accurately classifying and detecting faults in transmission line with high precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信