基于径向基神经网络的风电产量估计

G. Sideratos, N. Hatziargyriou
{"title":"基于径向基神经网络的风电产量估计","authors":"G. Sideratos, N. Hatziargyriou","doi":"10.1109/PES.2007.385812","DOIUrl":null,"url":null,"abstract":"This paper compares two statistical methods for short-term wind power forecasting applied in a real wind farm located on complex terrain. The methods require as input past power measurements and meteorological forecasts of wind speed and direction (Numerical Weather Predictions or NWPs) interpolated at the site of the wind farm. Both methods include NWPs estimator models based on fuzzy logic and wind power forecasting models using neural networks combination.","PeriodicalId":380613,"journal":{"name":"2007 IEEE Power Engineering Society General Meeting","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Using Radial Basis Neural Networks to Estimate Wind Power Production\",\"authors\":\"G. Sideratos, N. Hatziargyriou\",\"doi\":\"10.1109/PES.2007.385812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper compares two statistical methods for short-term wind power forecasting applied in a real wind farm located on complex terrain. The methods require as input past power measurements and meteorological forecasts of wind speed and direction (Numerical Weather Predictions or NWPs) interpolated at the site of the wind farm. Both methods include NWPs estimator models based on fuzzy logic and wind power forecasting models using neural networks combination.\",\"PeriodicalId\":380613,\"journal\":{\"name\":\"2007 IEEE Power Engineering Society General Meeting\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Power Engineering Society General Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PES.2007.385812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Power Engineering Society General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PES.2007.385812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

本文比较了两种统计方法在实际复杂地形风电场短期风电功率预测中的应用。这些方法需要输入过去的功率测量和风速和风向的气象预报(数值天气预报或NWPs),在风电场现场进行插值。两种方法都包括基于模糊逻辑的NWPs估计模型和基于神经网络组合的风电预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Radial Basis Neural Networks to Estimate Wind Power Production
This paper compares two statistical methods for short-term wind power forecasting applied in a real wind farm located on complex terrain. The methods require as input past power measurements and meteorological forecasts of wind speed and direction (Numerical Weather Predictions or NWPs) interpolated at the site of the wind farm. Both methods include NWPs estimator models based on fuzzy logic and wind power forecasting models using neural networks combination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信