电力消耗数据的异常检测和可视化

Nyoungwoo Lee, Jehyun Nam, Ho‐Jin Choi
{"title":"电力消耗数据的异常检测和可视化","authors":"Nyoungwoo Lee, Jehyun Nam, Ho‐Jin Choi","doi":"10.1109/ICDMW51313.2020.00108","DOIUrl":null,"url":null,"abstract":"Power supplied enterprises need to accurately detect abnormal power consumption cases to predict power demand. Since actual abnormal power consumption patterns are irregular, a flexible model should be designed to address this situation. Thus, we inspect abnormal power consumption data and predict potential abnormal patterns. Based on these insights, the goal of this work is to generate data onto the identified abnormal patterns and to design a flexible model that can detect the generated abnormal data. As a result, a performance for anomaly detection of the final model recorded 74% and 72% accuracy for original abnormal and normal data, respectively, and randomly generated abnormal data recorded 95.07% accuracy for growth type and 89.69% accuracy for reduction type. We suggest a set of ways to identify potential abnormal data and design flexible models to address them.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"227 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomaly Detection and Visualization for Electricity Consumption Data\",\"authors\":\"Nyoungwoo Lee, Jehyun Nam, Ho‐Jin Choi\",\"doi\":\"10.1109/ICDMW51313.2020.00108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power supplied enterprises need to accurately detect abnormal power consumption cases to predict power demand. Since actual abnormal power consumption patterns are irregular, a flexible model should be designed to address this situation. Thus, we inspect abnormal power consumption data and predict potential abnormal patterns. Based on these insights, the goal of this work is to generate data onto the identified abnormal patterns and to design a flexible model that can detect the generated abnormal data. As a result, a performance for anomaly detection of the final model recorded 74% and 72% accuracy for original abnormal and normal data, respectively, and randomly generated abnormal data recorded 95.07% accuracy for growth type and 89.69% accuracy for reduction type. We suggest a set of ways to identify potential abnormal data and design flexible models to address them.\",\"PeriodicalId\":426846,\"journal\":{\"name\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"227 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW51313.2020.00108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

供电企业需要准确检测异常用电情况,预测用电需求。由于实际的异常功耗模式是不规则的,因此应该设计一个灵活的模型来处理这种情况。因此,我们检查异常的功耗数据,并预测潜在的异常模式。基于这些见解,这项工作的目标是将数据生成到已识别的异常模式上,并设计一个可以检测生成的异常数据的灵活模型。结果,最终模型的异常检测性能对原始异常和正常数据的准确率分别为74%和72%,随机生成的异常数据对生长型的准确率为95.07%,对约简型的准确率为89.69%。我们提出了一组方法来识别潜在的异常数据,并设计灵活的模型来解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomaly Detection and Visualization for Electricity Consumption Data
Power supplied enterprises need to accurately detect abnormal power consumption cases to predict power demand. Since actual abnormal power consumption patterns are irregular, a flexible model should be designed to address this situation. Thus, we inspect abnormal power consumption data and predict potential abnormal patterns. Based on these insights, the goal of this work is to generate data onto the identified abnormal patterns and to design a flexible model that can detect the generated abnormal data. As a result, a performance for anomaly detection of the final model recorded 74% and 72% accuracy for original abnormal and normal data, respectively, and randomly generated abnormal data recorded 95.07% accuracy for growth type and 89.69% accuracy for reduction type. We suggest a set of ways to identify potential abnormal data and design flexible models to address them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信