OpenMeasure:基于SDN在线学习的自适应流量测量和推理

Chang Liu, M. Malboubi, C. Chuah
{"title":"OpenMeasure:基于SDN在线学习的自适应流量测量和推理","authors":"Chang Liu, M. Malboubi, C. Chuah","doi":"10.1109/INFCOMW.2016.7562044","DOIUrl":null,"url":null,"abstract":"Accurate and efficient network-wide traffic measurement is crucial for network management. Recently, Software-defined networking (SDN) has opened up new opportunities in network measurement and inference. In this work, we demonstrate an efficient flow measurement and inference framework which performs adaptive measurement with online learning. Using the reprogrammability of SDN, we assist network inference with online learning predictions and dynamically update the measurement rules network-wide to track and measure the most informative flows. To best utilize the available measurement resources, we leverage the SDN controller (with its global view) to optimally place flow monitoring rules across network switches. Using real-world data, we show that our measurement framework achieves high performance in both estimating the traffic matrix and identifying hierarchical heavy hitters.","PeriodicalId":348177,"journal":{"name":"2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"OpenMeasure: Adaptive flow measurement & inference with online learning in SDN\",\"authors\":\"Chang Liu, M. Malboubi, C. Chuah\",\"doi\":\"10.1109/INFCOMW.2016.7562044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate and efficient network-wide traffic measurement is crucial for network management. Recently, Software-defined networking (SDN) has opened up new opportunities in network measurement and inference. In this work, we demonstrate an efficient flow measurement and inference framework which performs adaptive measurement with online learning. Using the reprogrammability of SDN, we assist network inference with online learning predictions and dynamically update the measurement rules network-wide to track and measure the most informative flows. To best utilize the available measurement resources, we leverage the SDN controller (with its global view) to optimally place flow monitoring rules across network switches. Using real-world data, we show that our measurement framework achieves high performance in both estimating the traffic matrix and identifying hierarchical heavy hitters.\",\"PeriodicalId\":348177,\"journal\":{\"name\":\"2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFCOMW.2016.7562044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOMW.2016.7562044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

准确、高效的网络流量测量对网络管理至关重要。近年来,软件定义网络(SDN)为网络测量和推理提供了新的机遇。在这项工作中,我们展示了一个有效的流量测量和推理框架,该框架通过在线学习执行自适应测量。利用SDN的可重编程性,我们通过在线学习预测来协助网络推理,并动态更新网络范围内的测量规则,以跟踪和测量最多的信息流。为了最好地利用可用的测量资源,我们利用SDN控制器(及其全局视图)在网络交换机上最佳地放置流量监控规则。使用真实世界的数据,我们表明我们的测量框架在估计流量矩阵和识别分层重击者方面都达到了高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OpenMeasure: Adaptive flow measurement & inference with online learning in SDN
Accurate and efficient network-wide traffic measurement is crucial for network management. Recently, Software-defined networking (SDN) has opened up new opportunities in network measurement and inference. In this work, we demonstrate an efficient flow measurement and inference framework which performs adaptive measurement with online learning. Using the reprogrammability of SDN, we assist network inference with online learning predictions and dynamically update the measurement rules network-wide to track and measure the most informative flows. To best utilize the available measurement resources, we leverage the SDN controller (with its global view) to optimally place flow monitoring rules across network switches. Using real-world data, we show that our measurement framework achieves high performance in both estimating the traffic matrix and identifying hierarchical heavy hitters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信