推理微暗网:推理加速器设计的ESL参考

Min-Zhi Ji, Wei-Chung Tseng, Ting Wu, Bo-Rong Lin, C. Chen
{"title":"推理微暗网:推理加速器设计的ESL参考","authors":"Min-Zhi Ji, Wei-Chung Tseng, Ting Wu, Bo-Rong Lin, C. Chen","doi":"10.1109/isocc47750.2019.9027644","DOIUrl":null,"url":null,"abstract":"For neural network (NN) models applying to low-end edge devices, the memory management is a very important issue because of the limitation of hardware resources. However, current NN frameworks typically allocate a huge memory space for NN models in the initial stage. To reduce memory requirements, we propose a lite NN inference-only framework, MDFI (Micro Darknet for Inference) based on Darknet. We optimize the MDFI C code by a layer-wise memory management and layer-dependency resolving mechanism. According to the experimental results, the average memory consumption of MDFI has 76% reduction compared to Darknet, and the average execution time of MDFI has 8% reduction also.","PeriodicalId":113802,"journal":{"name":"2019 International SoC Design Conference (ISOCC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Micro Darknet For Inference: ESL reference for inference accelerator design\",\"authors\":\"Min-Zhi Ji, Wei-Chung Tseng, Ting Wu, Bo-Rong Lin, C. Chen\",\"doi\":\"10.1109/isocc47750.2019.9027644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For neural network (NN) models applying to low-end edge devices, the memory management is a very important issue because of the limitation of hardware resources. However, current NN frameworks typically allocate a huge memory space for NN models in the initial stage. To reduce memory requirements, we propose a lite NN inference-only framework, MDFI (Micro Darknet for Inference) based on Darknet. We optimize the MDFI C code by a layer-wise memory management and layer-dependency resolving mechanism. According to the experimental results, the average memory consumption of MDFI has 76% reduction compared to Darknet, and the average execution time of MDFI has 8% reduction also.\",\"PeriodicalId\":113802,\"journal\":{\"name\":\"2019 International SoC Design Conference (ISOCC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/isocc47750.2019.9027644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/isocc47750.2019.9027644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于应用于低端边缘设备的神经网络模型,由于硬件资源的限制,内存管理是一个非常重要的问题。然而,当前的神经网络框架通常在初始阶段为神经网络模型分配巨大的内存空间。为了减少内存需求,我们提出了一个基于Darknet的精简神经网络推理框架MDFI (Micro Darknet for Inference)。我们通过分层内存管理和分层依赖解析机制来优化MDFI代码。实验结果表明,MDFI的平均内存消耗比Darknet减少了76%,MDFI的平均执行时间也减少了8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Micro Darknet For Inference: ESL reference for inference accelerator design
For neural network (NN) models applying to low-end edge devices, the memory management is a very important issue because of the limitation of hardware resources. However, current NN frameworks typically allocate a huge memory space for NN models in the initial stage. To reduce memory requirements, we propose a lite NN inference-only framework, MDFI (Micro Darknet for Inference) based on Darknet. We optimize the MDFI C code by a layer-wise memory management and layer-dependency resolving mechanism. According to the experimental results, the average memory consumption of MDFI has 76% reduction compared to Darknet, and the average execution time of MDFI has 8% reduction also.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信