{"title":"高性能的反向建模与反向蒙特卡罗模拟","authors":"Abhinav Sarje, X. Li, A. Hexemer","doi":"10.1109/ICPP.2014.29","DOIUrl":null,"url":null,"abstract":"In the field of nanoparticle material science, X-ray scattering techniques are widely used for characterization of macromolecules and particle systems (ordered, partially-ordered or custom) based on their structural properties at the micro- and nano-scales. Numerous applications utilize these, including design and fabrication of energy-relevant nanodevices such as photovoltaic and energy storage devices. Due to its size, analysis of raw data obtained through present ultra-fast light beamlines and X-ray scattering detectors has been a primary bottleneck in such characterization processes. To address this hurdle, we are developing high-performance parallel algorithms and codes for analysis of X-ray scattering data for several of the scattering methods, such as the Small Angle X-ray Scattering (SAXS), which we talk about in this paper. As an inverse modeling problem, structural fitting of the raw data obtained through SAXS experiments is a method used for extracting meaningful information on the structural properties of materials. Such fitting processes involve a large number of variable parameters and, hence, require a large amount of computational power. In this paper, we focus on this problem and present a high-performance and scalable parallel solution based on the Reverse Monte Carlo simulation algorithm, on highly-parallel systems such as clusters of multicore CPUs and graphics processors. We have implemented and optimized our algorithm on generic multi-core CPUs as well as the Nvidia GPU architectures with C++ and CUDA. We also present detailed performance results and computational analysis of our code.","PeriodicalId":441115,"journal":{"name":"2014 43rd International Conference on Parallel Processing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"High-Performance Inverse Modeling with Reverse Monte Carlo Simulations\",\"authors\":\"Abhinav Sarje, X. Li, A. Hexemer\",\"doi\":\"10.1109/ICPP.2014.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of nanoparticle material science, X-ray scattering techniques are widely used for characterization of macromolecules and particle systems (ordered, partially-ordered or custom) based on their structural properties at the micro- and nano-scales. Numerous applications utilize these, including design and fabrication of energy-relevant nanodevices such as photovoltaic and energy storage devices. Due to its size, analysis of raw data obtained through present ultra-fast light beamlines and X-ray scattering detectors has been a primary bottleneck in such characterization processes. To address this hurdle, we are developing high-performance parallel algorithms and codes for analysis of X-ray scattering data for several of the scattering methods, such as the Small Angle X-ray Scattering (SAXS), which we talk about in this paper. As an inverse modeling problem, structural fitting of the raw data obtained through SAXS experiments is a method used for extracting meaningful information on the structural properties of materials. Such fitting processes involve a large number of variable parameters and, hence, require a large amount of computational power. In this paper, we focus on this problem and present a high-performance and scalable parallel solution based on the Reverse Monte Carlo simulation algorithm, on highly-parallel systems such as clusters of multicore CPUs and graphics processors. We have implemented and optimized our algorithm on generic multi-core CPUs as well as the Nvidia GPU architectures with C++ and CUDA. We also present detailed performance results and computational analysis of our code.\",\"PeriodicalId\":441115,\"journal\":{\"name\":\"2014 43rd International Conference on Parallel Processing\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 43rd International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2014.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 43rd International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2014.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Performance Inverse Modeling with Reverse Monte Carlo Simulations
In the field of nanoparticle material science, X-ray scattering techniques are widely used for characterization of macromolecules and particle systems (ordered, partially-ordered or custom) based on their structural properties at the micro- and nano-scales. Numerous applications utilize these, including design and fabrication of energy-relevant nanodevices such as photovoltaic and energy storage devices. Due to its size, analysis of raw data obtained through present ultra-fast light beamlines and X-ray scattering detectors has been a primary bottleneck in such characterization processes. To address this hurdle, we are developing high-performance parallel algorithms and codes for analysis of X-ray scattering data for several of the scattering methods, such as the Small Angle X-ray Scattering (SAXS), which we talk about in this paper. As an inverse modeling problem, structural fitting of the raw data obtained through SAXS experiments is a method used for extracting meaningful information on the structural properties of materials. Such fitting processes involve a large number of variable parameters and, hence, require a large amount of computational power. In this paper, we focus on this problem and present a high-performance and scalable parallel solution based on the Reverse Monte Carlo simulation algorithm, on highly-parallel systems such as clusters of multicore CPUs and graphics processors. We have implemented and optimized our algorithm on generic multi-core CPUs as well as the Nvidia GPU architectures with C++ and CUDA. We also present detailed performance results and computational analysis of our code.