量子波导不连续分析

Afaf M. A. Saeed, S. Obayya
{"title":"量子波导不连续分析","authors":"Afaf M. A. Saeed, S. Obayya","doi":"10.1109/NUSOD.2014.6935395","DOIUrl":null,"url":null,"abstract":"A finite-element bidirectional beam propagation method based on Blocked Schur (BS-FE-BiBPM) is presented for the solution of quantum waveguides discontinuities. By using BSFE-BiBPM, scattering properties of electron waveguide discontinuities could be accurately calculated based on the 1-D time-independent Schrödinger equation avoiding the use of modal solution stage without affecting the accuracy of the results. As will be shown through the analysis of a quantum resonant cavity, a quantum directional coupler, and a quantum waveguide transistor, the suggested BS-FE-BiBPM is very accurate, versatile, efficient, fast and stable.","PeriodicalId":114800,"journal":{"name":"Numerical Simulation of Optoelectronic Devices, 2014","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum waveguides discontinuities analysis\",\"authors\":\"Afaf M. A. Saeed, S. Obayya\",\"doi\":\"10.1109/NUSOD.2014.6935395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A finite-element bidirectional beam propagation method based on Blocked Schur (BS-FE-BiBPM) is presented for the solution of quantum waveguides discontinuities. By using BSFE-BiBPM, scattering properties of electron waveguide discontinuities could be accurately calculated based on the 1-D time-independent Schrödinger equation avoiding the use of modal solution stage without affecting the accuracy of the results. As will be shown through the analysis of a quantum resonant cavity, a quantum directional coupler, and a quantum waveguide transistor, the suggested BS-FE-BiBPM is very accurate, versatile, efficient, fast and stable.\",\"PeriodicalId\":114800,\"journal\":{\"name\":\"Numerical Simulation of Optoelectronic Devices, 2014\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Simulation of Optoelectronic Devices, 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD.2014.6935395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Simulation of Optoelectronic Devices, 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2014.6935395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对量子波导不连续问题,提出了一种基于阻塞舒尔(BS-FE-BiBPM)的有限元双向光束传播方法。利用BSFE-BiBPM,可以在不影响结果精度的前提下,根据一维时间无关Schrödinger方程精确计算电子波导不连续点的散射特性,避免了使用模态解阶段。通过对量子谐振腔、量子定向耦合器和量子波导晶体管的分析表明,所建议的BS-FE-BiBPM非常精确、通用、高效、快速和稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum waveguides discontinuities analysis
A finite-element bidirectional beam propagation method based on Blocked Schur (BS-FE-BiBPM) is presented for the solution of quantum waveguides discontinuities. By using BSFE-BiBPM, scattering properties of electron waveguide discontinuities could be accurately calculated based on the 1-D time-independent Schrödinger equation avoiding the use of modal solution stage without affecting the accuracy of the results. As will be shown through the analysis of a quantum resonant cavity, a quantum directional coupler, and a quantum waveguide transistor, the suggested BS-FE-BiBPM is very accurate, versatile, efficient, fast and stable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信