基于卷积长短期记忆神经网络和支持向量机的语音情感识别

Nattapong Kurpukdee, Tomoki Koriyama, Takao Kobayashi, S. Kasuriya, C. Wutiwiwatchai, P. Lamsrichan
{"title":"基于卷积长短期记忆神经网络和支持向量机的语音情感识别","authors":"Nattapong Kurpukdee, Tomoki Koriyama, Takao Kobayashi, S. Kasuriya, C. Wutiwiwatchai, P. Lamsrichan","doi":"10.1109/APSIPA.2017.8282315","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a speech emotion recognition technique using convolutional long short-term memory (LSTM) recurrent neural network (ConvLSTM-RNN) as a phoneme-based feature extractor from raw input speech signal. In the proposed technique, ConvLSTM-RNN outputs phoneme- based emotion probabilities to every frame of an input utterance. Then these probabilities are converted into statistical features of the input utterance and used for the input features of support vector machines (SVMs) or linear discriminant analysis (LDA) system to classify the utterance-level emotions. To assess the effectiveness of the proposed technique, we conducted experiments in the classification of four emotions (anger, happiness, sadness, and neutral) on IEMOCAP database. The result showed that the proposed technique with either of SVM or LDA classifier outperforms the conventional ConvLSTM-based one.","PeriodicalId":142091,"journal":{"name":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Speech emotion recognition using convolutional long short-term memory neural network and support vector machines\",\"authors\":\"Nattapong Kurpukdee, Tomoki Koriyama, Takao Kobayashi, S. Kasuriya, C. Wutiwiwatchai, P. Lamsrichan\",\"doi\":\"10.1109/APSIPA.2017.8282315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a speech emotion recognition technique using convolutional long short-term memory (LSTM) recurrent neural network (ConvLSTM-RNN) as a phoneme-based feature extractor from raw input speech signal. In the proposed technique, ConvLSTM-RNN outputs phoneme- based emotion probabilities to every frame of an input utterance. Then these probabilities are converted into statistical features of the input utterance and used for the input features of support vector machines (SVMs) or linear discriminant analysis (LDA) system to classify the utterance-level emotions. To assess the effectiveness of the proposed technique, we conducted experiments in the classification of four emotions (anger, happiness, sadness, and neutral) on IEMOCAP database. The result showed that the proposed technique with either of SVM or LDA classifier outperforms the conventional ConvLSTM-based one.\",\"PeriodicalId\":142091,\"journal\":{\"name\":\"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2017.8282315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2017.8282315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

在本文中,我们提出了一种使用卷积长短期记忆(LSTM)递归神经网络(ConvLSTM-RNN)作为原始输入语音信号中基于音素的特征提取器的语音情绪识别技术。在提出的技术中,ConvLSTM-RNN将基于音素的情绪概率输出到输入话语的每一帧。然后将这些概率转换为输入话语的统计特征,用于支持向量机(svm)或线性判别分析(LDA)系统的输入特征,对话语级情绪进行分类。为了评估该方法的有效性,我们在IEMOCAP数据库上对四种情绪(愤怒、快乐、悲伤和中性)进行了分类实验。结果表明,本文提出的SVM和LDA分类器都优于传统的基于convlstm的分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speech emotion recognition using convolutional long short-term memory neural network and support vector machines
In this paper, we propose a speech emotion recognition technique using convolutional long short-term memory (LSTM) recurrent neural network (ConvLSTM-RNN) as a phoneme-based feature extractor from raw input speech signal. In the proposed technique, ConvLSTM-RNN outputs phoneme- based emotion probabilities to every frame of an input utterance. Then these probabilities are converted into statistical features of the input utterance and used for the input features of support vector machines (SVMs) or linear discriminant analysis (LDA) system to classify the utterance-level emotions. To assess the effectiveness of the proposed technique, we conducted experiments in the classification of four emotions (anger, happiness, sadness, and neutral) on IEMOCAP database. The result showed that the proposed technique with either of SVM or LDA classifier outperforms the conventional ConvLSTM-based one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信