{"title":"基于2.4 GHz CMOS设计的无线传感器网络射频-直流能量采集与电荷控制系统","authors":"J. Hora, Xi Zhu, E. Dutkiewicz","doi":"10.1109/WPTC45513.2019.9055641","DOIUrl":null,"url":null,"abstract":"This paper presents an RF-to-DC energy harvester in the Wi-Fi band. The energy harvester is meant to charge the 1.2V battery of the wireless sensor node device. The system design consists of three main circuit blocks: A low-dropout (LDO) voltage regulator, a charge control circuit and multistage differential-drive rectifier. The maximum PCE attained by the rectifier alone is 31.43%. The charge control circuit maintains the voltage within 1.3V-l.4V, while the LDO provides a stable and regulated output of 1.2V. The designed energy harvester has a minimum RF input power of −2.04 dBm. The chip layout of the overall design has a dimension of 1.2mm × 1.1mm.","PeriodicalId":148719,"journal":{"name":"2019 IEEE Wireless Power Transfer Conference (WPTC)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"2.4 GHz CMOS Design RF-to-DC Energy Harvesting with Charge Control System for WSN Application\",\"authors\":\"J. Hora, Xi Zhu, E. Dutkiewicz\",\"doi\":\"10.1109/WPTC45513.2019.9055641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an RF-to-DC energy harvester in the Wi-Fi band. The energy harvester is meant to charge the 1.2V battery of the wireless sensor node device. The system design consists of three main circuit blocks: A low-dropout (LDO) voltage regulator, a charge control circuit and multistage differential-drive rectifier. The maximum PCE attained by the rectifier alone is 31.43%. The charge control circuit maintains the voltage within 1.3V-l.4V, while the LDO provides a stable and regulated output of 1.2V. The designed energy harvester has a minimum RF input power of −2.04 dBm. The chip layout of the overall design has a dimension of 1.2mm × 1.1mm.\",\"PeriodicalId\":148719,\"journal\":{\"name\":\"2019 IEEE Wireless Power Transfer Conference (WPTC)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Wireless Power Transfer Conference (WPTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WPTC45513.2019.9055641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Wireless Power Transfer Conference (WPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPTC45513.2019.9055641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
2.4 GHz CMOS Design RF-to-DC Energy Harvesting with Charge Control System for WSN Application
This paper presents an RF-to-DC energy harvester in the Wi-Fi band. The energy harvester is meant to charge the 1.2V battery of the wireless sensor node device. The system design consists of three main circuit blocks: A low-dropout (LDO) voltage regulator, a charge control circuit and multistage differential-drive rectifier. The maximum PCE attained by the rectifier alone is 31.43%. The charge control circuit maintains the voltage within 1.3V-l.4V, while the LDO provides a stable and regulated output of 1.2V. The designed energy harvester has a minimum RF input power of −2.04 dBm. The chip layout of the overall design has a dimension of 1.2mm × 1.1mm.