{"title":"IEEE 802.15.4-TSCH网络形成中的无冲突广播方法","authors":"A. Karalis, Dimitrios Zorbas, C. Douligeris","doi":"10.1145/3242102.3242108","DOIUrl":null,"url":null,"abstract":"One of the most recent and reliable MAC protocols for low-rate wireless personal area networks is the IEEE802.15.4-TSCH. The formation of an IEEE802.15.4-TSCH network depends on the periodic transmission of Enhanced Beacons (EBs), and, by extension, on the scheduling of EB transmissions. In this paper, we present and analyze a negative phenomenon that can occur in most of the autonomous EB scheduling methods proposed in the literature. This phenomenon, which we call full collision, takes place when all the neighboring EB transmissions of a joining node collide. As a consequence, a node may not be able to join the network fast, consuming a considerable amount of energy as well. In order to eliminate collisions during EB transmissions, and, thus, to avoid the occurrence of this phenomenon, we propose a novel autonomous collision-free EB scheduling policy. The results of our simulations demonstrate the superiority of our policy compared to two other recently proposed policies.","PeriodicalId":241359,"journal":{"name":"Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Collision-Free Broadcast Methods for IEEE 802.15.4-TSCH Networks Formation\",\"authors\":\"A. Karalis, Dimitrios Zorbas, C. Douligeris\",\"doi\":\"10.1145/3242102.3242108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most recent and reliable MAC protocols for low-rate wireless personal area networks is the IEEE802.15.4-TSCH. The formation of an IEEE802.15.4-TSCH network depends on the periodic transmission of Enhanced Beacons (EBs), and, by extension, on the scheduling of EB transmissions. In this paper, we present and analyze a negative phenomenon that can occur in most of the autonomous EB scheduling methods proposed in the literature. This phenomenon, which we call full collision, takes place when all the neighboring EB transmissions of a joining node collide. As a consequence, a node may not be able to join the network fast, consuming a considerable amount of energy as well. In order to eliminate collisions during EB transmissions, and, thus, to avoid the occurrence of this phenomenon, we propose a novel autonomous collision-free EB scheduling policy. The results of our simulations demonstrate the superiority of our policy compared to two other recently proposed policies.\",\"PeriodicalId\":241359,\"journal\":{\"name\":\"Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3242102.3242108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3242102.3242108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Collision-Free Broadcast Methods for IEEE 802.15.4-TSCH Networks Formation
One of the most recent and reliable MAC protocols for low-rate wireless personal area networks is the IEEE802.15.4-TSCH. The formation of an IEEE802.15.4-TSCH network depends on the periodic transmission of Enhanced Beacons (EBs), and, by extension, on the scheduling of EB transmissions. In this paper, we present and analyze a negative phenomenon that can occur in most of the autonomous EB scheduling methods proposed in the literature. This phenomenon, which we call full collision, takes place when all the neighboring EB transmissions of a joining node collide. As a consequence, a node may not be able to join the network fast, consuming a considerable amount of energy as well. In order to eliminate collisions during EB transmissions, and, thus, to avoid the occurrence of this phenomenon, we propose a novel autonomous collision-free EB scheduling policy. The results of our simulations demonstrate the superiority of our policy compared to two other recently proposed policies.