{"title":"基于可变遗忘因子自适应滤波的极运动预测","authors":"S. Jia, Tianhe Xu, Honglei Yang","doi":"10.1109/CPGPS.2017.8075133","DOIUrl":null,"url":null,"abstract":"The Polar Motion (PM) is the important parameter of Earth Rotation Parameters (ERP), and the high-precision prediction of PM plays a key role in the applications of autonomous orbit determination, the geodetic survey, navigation and aviation. In this paper, a modified algorithm is proposed to improve the PM prediction accuracy based on combination of Least Square and Autoregressive Model (LS+AR). An adaptive filtering of variable forgetting factor is developed to amend the LS fitting terms and predict extrapolations, which is named LS+AR+AF algorithm. The numerical results show that LS+AR+AF algorithm can significantly enhance the prediction accuracy of PM, especially for the long-term perdition. The accuracy improvement of 360-day prediction for PM X component, PM Y component and total PM can reach 30.66%, 28.19% and 29.59% respectively, when using LS+AR+AF algorithm.","PeriodicalId":340067,"journal":{"name":"2017 Forum on Cooperative Positioning and Service (CPGPS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polar motion prediction based on adaptive filtering of variable forgetting factor\",\"authors\":\"S. Jia, Tianhe Xu, Honglei Yang\",\"doi\":\"10.1109/CPGPS.2017.8075133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Polar Motion (PM) is the important parameter of Earth Rotation Parameters (ERP), and the high-precision prediction of PM plays a key role in the applications of autonomous orbit determination, the geodetic survey, navigation and aviation. In this paper, a modified algorithm is proposed to improve the PM prediction accuracy based on combination of Least Square and Autoregressive Model (LS+AR). An adaptive filtering of variable forgetting factor is developed to amend the LS fitting terms and predict extrapolations, which is named LS+AR+AF algorithm. The numerical results show that LS+AR+AF algorithm can significantly enhance the prediction accuracy of PM, especially for the long-term perdition. The accuracy improvement of 360-day prediction for PM X component, PM Y component and total PM can reach 30.66%, 28.19% and 29.59% respectively, when using LS+AR+AF algorithm.\",\"PeriodicalId\":340067,\"journal\":{\"name\":\"2017 Forum on Cooperative Positioning and Service (CPGPS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Forum on Cooperative Positioning and Service (CPGPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CPGPS.2017.8075133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Forum on Cooperative Positioning and Service (CPGPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPGPS.2017.8075133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polar motion prediction based on adaptive filtering of variable forgetting factor
The Polar Motion (PM) is the important parameter of Earth Rotation Parameters (ERP), and the high-precision prediction of PM plays a key role in the applications of autonomous orbit determination, the geodetic survey, navigation and aviation. In this paper, a modified algorithm is proposed to improve the PM prediction accuracy based on combination of Least Square and Autoregressive Model (LS+AR). An adaptive filtering of variable forgetting factor is developed to amend the LS fitting terms and predict extrapolations, which is named LS+AR+AF algorithm. The numerical results show that LS+AR+AF algorithm can significantly enhance the prediction accuracy of PM, especially for the long-term perdition. The accuracy improvement of 360-day prediction for PM X component, PM Y component and total PM can reach 30.66%, 28.19% and 29.59% respectively, when using LS+AR+AF algorithm.