基于机器学习的脑肿瘤识别框架

S. S, Sagaya Aurelia
{"title":"基于机器学习的脑肿瘤识别框架","authors":"S. S, Sagaya Aurelia","doi":"10.1109/ICEARS53579.2022.9752195","DOIUrl":null,"url":null,"abstract":"Brain tumor detection plays a significant role in medical image processing. Treatment for patients with brain tumors is primarily dependent on faster detection of these tumors. More rapid detection of brain tumors will help in the improvement of the patient's life chances. Diagnosis of brain tumors by doctors most commonly follow manual segmentation, which is difficult and time-consuming; instead, automatic detection is necessary. Nowadays, automatic detection plays a vital role and can be a solution to detecting brain tumors with better performance. Brain tumor detection using the MRI images method is an essential diagnostic tool for predicting brain tumors; the implementation for these kinds of detection can be done using various machine learning algorithms and methodologies. It helps the doctors understand the actual progression of the evolving tumor, allowing the doctors to decide how the treatment has to be given for that particular patient and measures required to follow up. Therefore, the intention is to create a framework to detect brain tumors in MRI images using a machine learning algorithm and analyze the performance of the brain tumor detection using sensitivity and specificity, which helps us to analyze how well the algorithm has performed in detecting the brain tumors accurately and develop a mobile application framework in which the MRI images can be directly scanned to know whether the cancer is present in a scanned MRI image or not.","PeriodicalId":252961,"journal":{"name":"2022 International Conference on Electronics and Renewable Systems (ICEARS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Machine Learning Entrenched Brain Tumor Recognition Framework\",\"authors\":\"S. S, Sagaya Aurelia\",\"doi\":\"10.1109/ICEARS53579.2022.9752195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain tumor detection plays a significant role in medical image processing. Treatment for patients with brain tumors is primarily dependent on faster detection of these tumors. More rapid detection of brain tumors will help in the improvement of the patient's life chances. Diagnosis of brain tumors by doctors most commonly follow manual segmentation, which is difficult and time-consuming; instead, automatic detection is necessary. Nowadays, automatic detection plays a vital role and can be a solution to detecting brain tumors with better performance. Brain tumor detection using the MRI images method is an essential diagnostic tool for predicting brain tumors; the implementation for these kinds of detection can be done using various machine learning algorithms and methodologies. It helps the doctors understand the actual progression of the evolving tumor, allowing the doctors to decide how the treatment has to be given for that particular patient and measures required to follow up. Therefore, the intention is to create a framework to detect brain tumors in MRI images using a machine learning algorithm and analyze the performance of the brain tumor detection using sensitivity and specificity, which helps us to analyze how well the algorithm has performed in detecting the brain tumors accurately and develop a mobile application framework in which the MRI images can be directly scanned to know whether the cancer is present in a scanned MRI image or not.\",\"PeriodicalId\":252961,\"journal\":{\"name\":\"2022 International Conference on Electronics and Renewable Systems (ICEARS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Electronics and Renewable Systems (ICEARS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEARS53579.2022.9752195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electronics and Renewable Systems (ICEARS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEARS53579.2022.9752195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

脑肿瘤检测在医学图像处理中占有重要地位。脑肿瘤患者的治疗主要依赖于更快地发现这些肿瘤。更快速的脑肿瘤检测将有助于提高患者的生存机会。医生对脑肿瘤的诊断通常采用人工分割,这既困难又耗时;相反,自动检测是必要的。目前,自动检测在脑肿瘤检测中起着至关重要的作用,可以成为一种性能更好的脑肿瘤检测解决方案。利用MRI图像检测脑肿瘤是预测脑肿瘤的重要诊断工具;这些检测的实现可以使用各种机器学习算法和方法来完成。它可以帮助医生了解肿瘤发展的实际进展,使医生能够决定如何对特定患者进行治疗以及需要采取的后续措施。因此,我们的意图是创建一个框架,使用机器学习算法来检测MRI图像中的脑肿瘤,并使用灵敏度和特异性分析脑肿瘤检测的性能,这有助于我们分析算法在准确检测脑肿瘤方面的表现,并开发一个移动应用框架,其中MRI图像可以直接扫描,以了解扫描的MRI图像中是否存在癌症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Machine Learning Entrenched Brain Tumor Recognition Framework
Brain tumor detection plays a significant role in medical image processing. Treatment for patients with brain tumors is primarily dependent on faster detection of these tumors. More rapid detection of brain tumors will help in the improvement of the patient's life chances. Diagnosis of brain tumors by doctors most commonly follow manual segmentation, which is difficult and time-consuming; instead, automatic detection is necessary. Nowadays, automatic detection plays a vital role and can be a solution to detecting brain tumors with better performance. Brain tumor detection using the MRI images method is an essential diagnostic tool for predicting brain tumors; the implementation for these kinds of detection can be done using various machine learning algorithms and methodologies. It helps the doctors understand the actual progression of the evolving tumor, allowing the doctors to decide how the treatment has to be given for that particular patient and measures required to follow up. Therefore, the intention is to create a framework to detect brain tumors in MRI images using a machine learning algorithm and analyze the performance of the brain tumor detection using sensitivity and specificity, which helps us to analyze how well the algorithm has performed in detecting the brain tumors accurately and develop a mobile application framework in which the MRI images can be directly scanned to know whether the cancer is present in a scanned MRI image or not.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信