变系数问题的体积积分方程Stokes求解器

D. Malhotra, A. Gholami, G. Biros
{"title":"变系数问题的体积积分方程Stokes求解器","authors":"D. Malhotra, A. Gholami, G. Biros","doi":"10.1109/SC.2014.13","DOIUrl":null,"url":null,"abstract":"We present a novel numerical scheme for solving the Stokes equation with variable coefficients in the unit box. Our scheme is based on a volume integral equation formulation. Compared to finite element methods, our formulation decouples the velocity and pressure, generates velocity fields that are by construction divergence free to high accuracy and its performance does not depend on the order of the basis used for discretization. In addition, we employ a novel adaptive fast multipole method for volume integrals to obtain a scheme that is algorithmically optimal. Our scheme supports non-uniform discretizations and is spectrally accurate. To increase per node performance, we have integrated our code with both NVIDIA and Intel accelerators. In our largest scalability test, we solved a problem with 20 billion unknowns, using a 14-order approximation for the velocity, on 2048 nodes of the Stampede system at the Texas Advanced Computing Center. We achieved 0.656 peta FLOPS for the overall code (23% efficiency) and one peta FLOPS for the volume integrals (33% efficiency). As an application example, we simulate Stokes ow in a porous medium with highly complex pore structure using a penalty formulation to enforce the no slip condition.","PeriodicalId":275261,"journal":{"name":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A Volume Integral Equation Stokes Solver for Problems with Variable Coefficients\",\"authors\":\"D. Malhotra, A. Gholami, G. Biros\",\"doi\":\"10.1109/SC.2014.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel numerical scheme for solving the Stokes equation with variable coefficients in the unit box. Our scheme is based on a volume integral equation formulation. Compared to finite element methods, our formulation decouples the velocity and pressure, generates velocity fields that are by construction divergence free to high accuracy and its performance does not depend on the order of the basis used for discretization. In addition, we employ a novel adaptive fast multipole method for volume integrals to obtain a scheme that is algorithmically optimal. Our scheme supports non-uniform discretizations and is spectrally accurate. To increase per node performance, we have integrated our code with both NVIDIA and Intel accelerators. In our largest scalability test, we solved a problem with 20 billion unknowns, using a 14-order approximation for the velocity, on 2048 nodes of the Stampede system at the Texas Advanced Computing Center. We achieved 0.656 peta FLOPS for the overall code (23% efficiency) and one peta FLOPS for the volume integrals (33% efficiency). As an application example, we simulate Stokes ow in a porous medium with highly complex pore structure using a penalty formulation to enforce the no slip condition.\",\"PeriodicalId\":275261,\"journal\":{\"name\":\"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.2014.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2014.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了一种求解单位框内变系数Stokes方程的新数值格式。我们的方案是基于一个体积积分方程公式。与有限元方法相比,我们的公式解耦了速度和压力,生成的速度场在构造上是无散度的,精度很高,其性能不依赖于用于离散化的基的顺序。此外,我们采用了一种新的自适应快速多极体积分方法,以获得算法最优的方案。该方案支持非均匀离散化,具有光谱精度。为了提高每个节点的性能,我们将代码与NVIDIA和Intel加速器集成在一起。在我们最大的可伸缩性测试中,我们在Texas Advanced Computing Center的Stampede系统的2048个节点上,使用14阶近似速度,解决了一个包含200亿个未知数的问题。我们为整个代码实现了0.656 peta FLOPS(23%的效率),为体积积分实现了1 peta FLOPS(33%的效率)。作为应用实例,我们在具有高度复杂孔隙结构的多孔介质中,采用惩罚公式来模拟Stokes流,以实现无滑移条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Volume Integral Equation Stokes Solver for Problems with Variable Coefficients
We present a novel numerical scheme for solving the Stokes equation with variable coefficients in the unit box. Our scheme is based on a volume integral equation formulation. Compared to finite element methods, our formulation decouples the velocity and pressure, generates velocity fields that are by construction divergence free to high accuracy and its performance does not depend on the order of the basis used for discretization. In addition, we employ a novel adaptive fast multipole method for volume integrals to obtain a scheme that is algorithmically optimal. Our scheme supports non-uniform discretizations and is spectrally accurate. To increase per node performance, we have integrated our code with both NVIDIA and Intel accelerators. In our largest scalability test, we solved a problem with 20 billion unknowns, using a 14-order approximation for the velocity, on 2048 nodes of the Stampede system at the Texas Advanced Computing Center. We achieved 0.656 peta FLOPS for the overall code (23% efficiency) and one peta FLOPS for the volume integrals (33% efficiency). As an application example, we simulate Stokes ow in a porous medium with highly complex pore structure using a penalty formulation to enforce the no slip condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信