在医学信息检索中使用标签邻域进行查询扩展

F. Durão, K. Bayyapu, Guandong Xu, Peter Dolog, Ricardo Lage
{"title":"在医学信息检索中使用标签邻域进行查询扩展","authors":"F. Durão, K. Bayyapu, Guandong Xu, Peter Dolog, Ricardo Lage","doi":"10.1109/ICISA.2011.5772324","DOIUrl":null,"url":null,"abstract":"In the context of medical document retrieval, users often under-specified queries lead to undesired search results that suffer from not containing the information they seek, inadequate domain knowledge matches and unreliable sources. To overcome the limitations of under-specified queries, we utilize tags to enhance information retrieval capabilities by expanding users' original queries with context-relevant information. We compute a set of significant tag neighbor candidates based on the neighbor frequency and weight, and utilize the most frequent and weighted neighbors to expand an entry query that has terms matching tags. The proposed approach is evaluated using MedWorm medical article collection and standard evaluation methods from the text retrieval conference (TREC). We compared the baseline of 0.353 for Mean Average Precision (MAP), reaching a MAP 0.491 (+39\\%) with the query expansion. In-depth analysis shows how this strategy is beneficial when compared with different ranks of the retrieval results.","PeriodicalId":425210,"journal":{"name":"2011 International Conference on Information Science and Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Using Tag-Neighbors for Query Expansion in Medical Information Retrieval\",\"authors\":\"F. Durão, K. Bayyapu, Guandong Xu, Peter Dolog, Ricardo Lage\",\"doi\":\"10.1109/ICISA.2011.5772324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of medical document retrieval, users often under-specified queries lead to undesired search results that suffer from not containing the information they seek, inadequate domain knowledge matches and unreliable sources. To overcome the limitations of under-specified queries, we utilize tags to enhance information retrieval capabilities by expanding users' original queries with context-relevant information. We compute a set of significant tag neighbor candidates based on the neighbor frequency and weight, and utilize the most frequent and weighted neighbors to expand an entry query that has terms matching tags. The proposed approach is evaluated using MedWorm medical article collection and standard evaluation methods from the text retrieval conference (TREC). We compared the baseline of 0.353 for Mean Average Precision (MAP), reaching a MAP 0.491 (+39\\\\%) with the query expansion. In-depth analysis shows how this strategy is beneficial when compared with different ranks of the retrieval results.\",\"PeriodicalId\":425210,\"journal\":{\"name\":\"2011 International Conference on Information Science and Applications\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Information Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISA.2011.5772324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Information Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISA.2011.5772324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在医学文档检索中,用户的查询往往不够明确,导致搜索结果不理想,因为这些结果不包含用户所寻求的信息、领域知识匹配不足以及来源不可靠。为了克服指定查询不足的局限性,我们利用标签来增强信息检索能力,用上下文相关信息来扩展用户的原始查询。我们根据邻接频率和权重计算出一组重要的标签邻接候选项,并利用频率最高、权重最高的邻接项来扩展具有匹配标签的术语的条目查询。我们使用 MedWorm 医学文章集和文本检索会议(TREC)的标准评估方法对所提出的方法进行了评估。与平均精度(MAP)为 0.353 的基线相比,查询扩展后的平均精度达到了 0.491(+39/%)。深入的分析表明,与不同等级的检索结果相比,这种策略是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Tag-Neighbors for Query Expansion in Medical Information Retrieval
In the context of medical document retrieval, users often under-specified queries lead to undesired search results that suffer from not containing the information they seek, inadequate domain knowledge matches and unreliable sources. To overcome the limitations of under-specified queries, we utilize tags to enhance information retrieval capabilities by expanding users' original queries with context-relevant information. We compute a set of significant tag neighbor candidates based on the neighbor frequency and weight, and utilize the most frequent and weighted neighbors to expand an entry query that has terms matching tags. The proposed approach is evaluated using MedWorm medical article collection and standard evaluation methods from the text retrieval conference (TREC). We compared the baseline of 0.353 for Mean Average Precision (MAP), reaching a MAP 0.491 (+39\%) with the query expansion. In-depth analysis shows how this strategy is beneficial when compared with different ranks of the retrieval results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信