{"title":"基于范数的失真度量下概率分布的量化","authors":"S. Delattre, S. Graf, H. Luschgy, G. Pagès","doi":"10.1524/stnd.22.4.261.64314","DOIUrl":null,"url":null,"abstract":"Summury For a probability measure P on Rd and n ∊ N consider en = inf ∫ mina∊αV(||x − a||)dP(x) where the infimum is taken over all subsets α of Rd with card(α) ≤ n and V is a nondecreasing function. Under certain conditions on V, we derive the precise n-asymptotics of en for nonsingular distributions P and we find the asymptotic performance of optimal quantizers using weighted empirical measures.","PeriodicalId":380446,"journal":{"name":"Statistics & Decisions","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Quantization of probability distributions under norm-based distortion measures\",\"authors\":\"S. Delattre, S. Graf, H. Luschgy, G. Pagès\",\"doi\":\"10.1524/stnd.22.4.261.64314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summury For a probability measure P on Rd and n ∊ N consider en = inf ∫ mina∊αV(||x − a||)dP(x) where the infimum is taken over all subsets α of Rd with card(α) ≤ n and V is a nondecreasing function. Under certain conditions on V, we derive the precise n-asymptotics of en for nonsingular distributions P and we find the asymptotic performance of optimal quantizers using weighted empirical measures.\",\"PeriodicalId\":380446,\"journal\":{\"name\":\"Statistics & Decisions\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Decisions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1524/stnd.22.4.261.64314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Decisions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1524/stnd.22.4.261.64314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantization of probability distributions under norm-based distortion measures
Summury For a probability measure P on Rd and n ∊ N consider en = inf ∫ mina∊αV(||x − a||)dP(x) where the infimum is taken over all subsets α of Rd with card(α) ≤ n and V is a nondecreasing function. Under certain conditions on V, we derive the precise n-asymptotics of en for nonsingular distributions P and we find the asymptotic performance of optimal quantizers using weighted empirical measures.