Ian Wang, Shixiong Qi, Elizabeth Liri, K. Ramakrishnan
{"title":"面向物联网应用的主动轻量级无服务器边缘云","authors":"Ian Wang, Shixiong Qi, Elizabeth Liri, K. Ramakrishnan","doi":"10.1109/nas51552.2021.9605384","DOIUrl":null,"url":null,"abstract":"Edge cloud solutions that bring the cloud closer to the sensors can be very useful to meet the low latency requirements of many Internet-of-Things (IoT) applications. However, IoT traffic can also be intermittent, so running applications constantly can be wasteful. Therefore, having a serverless edge cloud that is responsive and provides low-latency features is a very attractive option for a resource and cost-efficient IoT application environment.In this paper, we discuss the key components needed to support IoT traffic in the serverless edge cloud and identify the critical challenges that make it difficult to directly use existing serverless solutions such as Knative, for IoT applications. These include overhead from heavyweight components for managing the overall system and software adaptors for communication protocol translation used in off-the-shelf serverless platforms that are designed for large-scale centralized clouds. The latency imposed by ‘cold start’ is a further deterrent.To address these challenges we redesign several components of the Knative serverless framework. We use a streamlined protocol adaptor to leverage the MQTT IoT protocol in our serverless framework for IoT event processing. We also create a novel, event-driven proxy based on the extended Berkeley Packet Filter (eBPF), to replace the regular heavyweight Knative queue proxy. Our preliminary experimental results show that the event-driven proxy is a suitable replacement for the queue proxy in an IoT serverless environment and results in lower CPU usage and a higher request throughput.","PeriodicalId":135930,"journal":{"name":"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards a Proactive Lightweight Serverless Edge Cloud for Internet-of-Things Applications\",\"authors\":\"Ian Wang, Shixiong Qi, Elizabeth Liri, K. Ramakrishnan\",\"doi\":\"10.1109/nas51552.2021.9605384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge cloud solutions that bring the cloud closer to the sensors can be very useful to meet the low latency requirements of many Internet-of-Things (IoT) applications. However, IoT traffic can also be intermittent, so running applications constantly can be wasteful. Therefore, having a serverless edge cloud that is responsive and provides low-latency features is a very attractive option for a resource and cost-efficient IoT application environment.In this paper, we discuss the key components needed to support IoT traffic in the serverless edge cloud and identify the critical challenges that make it difficult to directly use existing serverless solutions such as Knative, for IoT applications. These include overhead from heavyweight components for managing the overall system and software adaptors for communication protocol translation used in off-the-shelf serverless platforms that are designed for large-scale centralized clouds. The latency imposed by ‘cold start’ is a further deterrent.To address these challenges we redesign several components of the Knative serverless framework. We use a streamlined protocol adaptor to leverage the MQTT IoT protocol in our serverless framework for IoT event processing. We also create a novel, event-driven proxy based on the extended Berkeley Packet Filter (eBPF), to replace the regular heavyweight Knative queue proxy. Our preliminary experimental results show that the event-driven proxy is a suitable replacement for the queue proxy in an IoT serverless environment and results in lower CPU usage and a higher request throughput.\",\"PeriodicalId\":135930,\"journal\":{\"name\":\"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/nas51552.2021.9605384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/nas51552.2021.9605384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards a Proactive Lightweight Serverless Edge Cloud for Internet-of-Things Applications
Edge cloud solutions that bring the cloud closer to the sensors can be very useful to meet the low latency requirements of many Internet-of-Things (IoT) applications. However, IoT traffic can also be intermittent, so running applications constantly can be wasteful. Therefore, having a serverless edge cloud that is responsive and provides low-latency features is a very attractive option for a resource and cost-efficient IoT application environment.In this paper, we discuss the key components needed to support IoT traffic in the serverless edge cloud and identify the critical challenges that make it difficult to directly use existing serverless solutions such as Knative, for IoT applications. These include overhead from heavyweight components for managing the overall system and software adaptors for communication protocol translation used in off-the-shelf serverless platforms that are designed for large-scale centralized clouds. The latency imposed by ‘cold start’ is a further deterrent.To address these challenges we redesign several components of the Knative serverless framework. We use a streamlined protocol adaptor to leverage the MQTT IoT protocol in our serverless framework for IoT event processing. We also create a novel, event-driven proxy based on the extended Berkeley Packet Filter (eBPF), to replace the regular heavyweight Knative queue proxy. Our preliminary experimental results show that the event-driven proxy is a suitable replacement for the queue proxy in an IoT serverless environment and results in lower CPU usage and a higher request throughput.