{"title":"基于线性回归的乌克兰COVID-19预测机器学习模型","authors":"A. Mohammadi, D. Chumachenko, T. Chumachenko","doi":"10.1109/ELIT53502.2021.9501122","DOIUrl":null,"url":null,"abstract":"Coronavirus or COVID-19 is a widespread pandemic that has affected almost all countries around the globe. The quantity of infected cases and deceased patients has been increasing at a fast pace globally. This virus not only is in charge of infecting billions of people but also affecting the economy of almost the whole world drastically. Thus, detailed studies are required to illustrating the following trend of the COVID-19 to develop proper short-term prediction models for forecasting the number of future cases. Generally, forecasting techniques are be inculcated in order to assist in designing better strategies and as well as making productive decisions. The forecasting techniques assess the situations of the past thereby enabling predictions about the situation in the future would be possible. Moreover, these predictions hopefully lead to preparation against potentially possible consequences and threats. It's crucial to point out that Forecasting techniques play a vital role in drawing accurate predictions. In this research, we categorize forecasting techniques into different types, including stochastic theory mathematical models and data science/machine learning techniques. In this perspective, it is feasible to generate and develop strategic planning in the public health system to prohibit more deceased cases and managing infected cases. Here, some forecast models based on machine learning are introduced and comprising the Linear Regression model which is assessed for time series prediction of confirmed, deaths, and recovered cases in Ukraine and the globe. It turned out that the Linear Regression model is feasible to implement and reliable in illustrating the trend of COVID-19.","PeriodicalId":164798,"journal":{"name":"2021 IEEE 12th International Conference on Electronics and Information Technologies (ELIT)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine Learning Model of COVID-19 Forecasting in Ukraine Based on the Linear Regression\",\"authors\":\"A. Mohammadi, D. Chumachenko, T. Chumachenko\",\"doi\":\"10.1109/ELIT53502.2021.9501122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coronavirus or COVID-19 is a widespread pandemic that has affected almost all countries around the globe. The quantity of infected cases and deceased patients has been increasing at a fast pace globally. This virus not only is in charge of infecting billions of people but also affecting the economy of almost the whole world drastically. Thus, detailed studies are required to illustrating the following trend of the COVID-19 to develop proper short-term prediction models for forecasting the number of future cases. Generally, forecasting techniques are be inculcated in order to assist in designing better strategies and as well as making productive decisions. The forecasting techniques assess the situations of the past thereby enabling predictions about the situation in the future would be possible. Moreover, these predictions hopefully lead to preparation against potentially possible consequences and threats. It's crucial to point out that Forecasting techniques play a vital role in drawing accurate predictions. In this research, we categorize forecasting techniques into different types, including stochastic theory mathematical models and data science/machine learning techniques. In this perspective, it is feasible to generate and develop strategic planning in the public health system to prohibit more deceased cases and managing infected cases. Here, some forecast models based on machine learning are introduced and comprising the Linear Regression model which is assessed for time series prediction of confirmed, deaths, and recovered cases in Ukraine and the globe. It turned out that the Linear Regression model is feasible to implement and reliable in illustrating the trend of COVID-19.\",\"PeriodicalId\":164798,\"journal\":{\"name\":\"2021 IEEE 12th International Conference on Electronics and Information Technologies (ELIT)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 12th International Conference on Electronics and Information Technologies (ELIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELIT53502.2021.9501122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th International Conference on Electronics and Information Technologies (ELIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELIT53502.2021.9501122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning Model of COVID-19 Forecasting in Ukraine Based on the Linear Regression
Coronavirus or COVID-19 is a widespread pandemic that has affected almost all countries around the globe. The quantity of infected cases and deceased patients has been increasing at a fast pace globally. This virus not only is in charge of infecting billions of people but also affecting the economy of almost the whole world drastically. Thus, detailed studies are required to illustrating the following trend of the COVID-19 to develop proper short-term prediction models for forecasting the number of future cases. Generally, forecasting techniques are be inculcated in order to assist in designing better strategies and as well as making productive decisions. The forecasting techniques assess the situations of the past thereby enabling predictions about the situation in the future would be possible. Moreover, these predictions hopefully lead to preparation against potentially possible consequences and threats. It's crucial to point out that Forecasting techniques play a vital role in drawing accurate predictions. In this research, we categorize forecasting techniques into different types, including stochastic theory mathematical models and data science/machine learning techniques. In this perspective, it is feasible to generate and develop strategic planning in the public health system to prohibit more deceased cases and managing infected cases. Here, some forecast models based on machine learning are introduced and comprising the Linear Regression model which is assessed for time series prediction of confirmed, deaths, and recovered cases in Ukraine and the globe. It turned out that the Linear Regression model is feasible to implement and reliable in illustrating the trend of COVID-19.