Jiajun Sun, Siyuan Peng, Qinglai Liu, Ruijie Zhao, Zhiping Lin
{"title":"鲁棒约束递归最小p幂自适应滤波算法","authors":"Jiajun Sun, Siyuan Peng, Qinglai Liu, Ruijie Zhao, Zhiping Lin","doi":"10.1109/ICDSP.2018.8631663","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a novel constrained adaptive filtering algorithm called constrained recursive least p-power (CRLP) algorithm, which incorporates a set of linear constraints into the least mean p-power error (LMP) criterion to solve a constrained optimization problem directly. Compared with the conventional constrained adaptive filtering algorithms including constrained least mean square (CLMS), constrained recursive least square (CRLS) and constrained least mean p-power (CLMP), CRLP can achieve better performance under non- Gaussian noises. Simulation results are presented to confirm the superior performance of the new algorithm.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Constrained Recursive Least P-Power Algorithm for Adaptive Filtering\",\"authors\":\"Jiajun Sun, Siyuan Peng, Qinglai Liu, Ruijie Zhao, Zhiping Lin\",\"doi\":\"10.1109/ICDSP.2018.8631663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a novel constrained adaptive filtering algorithm called constrained recursive least p-power (CRLP) algorithm, which incorporates a set of linear constraints into the least mean p-power error (LMP) criterion to solve a constrained optimization problem directly. Compared with the conventional constrained adaptive filtering algorithms including constrained least mean square (CLMS), constrained recursive least square (CRLS) and constrained least mean p-power (CLMP), CRLP can achieve better performance under non- Gaussian noises. Simulation results are presented to confirm the superior performance of the new algorithm.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust Constrained Recursive Least P-Power Algorithm for Adaptive Filtering
In this paper, we develop a novel constrained adaptive filtering algorithm called constrained recursive least p-power (CRLP) algorithm, which incorporates a set of linear constraints into the least mean p-power error (LMP) criterion to solve a constrained optimization problem directly. Compared with the conventional constrained adaptive filtering algorithms including constrained least mean square (CLMS), constrained recursive least square (CRLS) and constrained least mean p-power (CLMP), CRLP can achieve better performance under non- Gaussian noises. Simulation results are presented to confirm the superior performance of the new algorithm.