基于机器学习的软件系统运行时异常检测:工业评估

Fabian Huch, Mojdeh Golagha, A. Petrovska, Alexander Krauss
{"title":"基于机器学习的软件系统运行时异常检测:工业评估","authors":"Fabian Huch, Mojdeh Golagha, A. Petrovska, Alexander Krauss","doi":"10.1109/MALTESQUE.2018.8368453","DOIUrl":null,"url":null,"abstract":"Anomalies are an inevitable occurrence while operating enterprise software systems. Traditionally, anomalies are detected by threshold-based alarms for critical metrics, or health probing requests. However, fully automated detection in complex systems is challenging, since it is very difficult to distinguish truly anomalous behavior from normal operation. To this end, the traditional approaches may not be sufficient. Thus, we propose machine learning classifiers to predict the system's health status. We evaluated our approach in an industrial case study, on a large, real-world dataset of 7.5 • 106 data points for 231 features. Our results show that recurrent neural networks with long short-term memory (LSTM) are more effective in detecting anomalies and health issues, as compared to other classifiers. We achieved an area under precision-recall curve of 0.44. At the default threshold, we can automatically detect 70% of the anomalies. Despite the low precision of 31 %, the rate in which false positives occur is only 4 %.","PeriodicalId":345739,"journal":{"name":"2018 IEEE Workshop on Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Machine learning-based run-time anomaly detection in software systems: An industrial evaluation\",\"authors\":\"Fabian Huch, Mojdeh Golagha, A. Petrovska, Alexander Krauss\",\"doi\":\"10.1109/MALTESQUE.2018.8368453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomalies are an inevitable occurrence while operating enterprise software systems. Traditionally, anomalies are detected by threshold-based alarms for critical metrics, or health probing requests. However, fully automated detection in complex systems is challenging, since it is very difficult to distinguish truly anomalous behavior from normal operation. To this end, the traditional approaches may not be sufficient. Thus, we propose machine learning classifiers to predict the system's health status. We evaluated our approach in an industrial case study, on a large, real-world dataset of 7.5 • 106 data points for 231 features. Our results show that recurrent neural networks with long short-term memory (LSTM) are more effective in detecting anomalies and health issues, as compared to other classifiers. We achieved an area under precision-recall curve of 0.44. At the default threshold, we can automatically detect 70% of the anomalies. Despite the low precision of 31 %, the rate in which false positives occur is only 4 %.\",\"PeriodicalId\":345739,\"journal\":{\"name\":\"2018 IEEE Workshop on Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Workshop on Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MALTESQUE.2018.8368453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Workshop on Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MALTESQUE.2018.8368453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

异常是企业软件系统运行过程中不可避免的现象。传统上,异常是通过基于阈值的关键指标警报或运行状况探测请求来检测的。然而,在复杂系统中进行全自动检测是具有挑战性的,因为很难将真正的异常行为与正常操作区分开来。为此目的,传统的方法可能是不够的。因此,我们提出机器学习分类器来预测系统的健康状态。我们在一个工业案例研究中对我们的方法进行了评估,该研究是在一个具有7.5•106个数据点、231个特征的大型真实数据集上进行的。我们的研究结果表明,与其他分类器相比,具有长短期记忆(LSTM)的递归神经网络在检测异常和健康问题方面更有效。我们在精密度-召回率曲线下的面积为0.44。在默认阈值下,我们可以自动检测到70%的异常。尽管准确率低至31%,但假阳性的发生率仅为4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-based run-time anomaly detection in software systems: An industrial evaluation
Anomalies are an inevitable occurrence while operating enterprise software systems. Traditionally, anomalies are detected by threshold-based alarms for critical metrics, or health probing requests. However, fully automated detection in complex systems is challenging, since it is very difficult to distinguish truly anomalous behavior from normal operation. To this end, the traditional approaches may not be sufficient. Thus, we propose machine learning classifiers to predict the system's health status. We evaluated our approach in an industrial case study, on a large, real-world dataset of 7.5 • 106 data points for 231 features. Our results show that recurrent neural networks with long short-term memory (LSTM) are more effective in detecting anomalies and health issues, as compared to other classifiers. We achieved an area under precision-recall curve of 0.44. At the default threshold, we can automatically detect 70% of the anomalies. Despite the low precision of 31 %, the rate in which false positives occur is only 4 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信