DSGE模型的在线估计

Michael D Cai, Marco Del Negro, Edward P. Herbst, Ethan Matlin, Reca Sarfati, F. Schorfheide
{"title":"DSGE模型的在线估计","authors":"Michael D Cai, Marco Del Negro, Edward P. Herbst, Ethan Matlin, Reca Sarfati, F. Schorfheide","doi":"10.2139/ssrn.3426004","DOIUrl":null,"url":null,"abstract":"\n This paper illustrates the usefulness of sequential Monte Carlo (SMC) methods in approximating dynamic stochastic general equilibrium (DSGE) model posterior distributions. We show how the tempering schedule can be chosen adaptively, document the accuracy and runtime benefits of generalized data tempering for ‘online’ estimation (that is, re-estimating a model as new data become available), and provide examples of multimodal posteriors that are well captured by SMC methods. We then use the online estimation of the DSGE model to compute pseudo-out-of-sample density forecasts and study the sensitivity of the predictive performance to changes in the prior distribution. We find that making priors less informative (compared with the benchmark priors used in the literature) by increasing the prior variance does not lead to a deterioration of forecast accuracy.","PeriodicalId":123778,"journal":{"name":"ERN: Theoretical Dynamic Models (Topic)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Online Estimation of DSGE Models\",\"authors\":\"Michael D Cai, Marco Del Negro, Edward P. Herbst, Ethan Matlin, Reca Sarfati, F. Schorfheide\",\"doi\":\"10.2139/ssrn.3426004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper illustrates the usefulness of sequential Monte Carlo (SMC) methods in approximating dynamic stochastic general equilibrium (DSGE) model posterior distributions. We show how the tempering schedule can be chosen adaptively, document the accuracy and runtime benefits of generalized data tempering for ‘online’ estimation (that is, re-estimating a model as new data become available), and provide examples of multimodal posteriors that are well captured by SMC methods. We then use the online estimation of the DSGE model to compute pseudo-out-of-sample density forecasts and study the sensitivity of the predictive performance to changes in the prior distribution. We find that making priors less informative (compared with the benchmark priors used in the literature) by increasing the prior variance does not lead to a deterioration of forecast accuracy.\",\"PeriodicalId\":123778,\"journal\":{\"name\":\"ERN: Theoretical Dynamic Models (Topic)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Theoretical Dynamic Models (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3426004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Theoretical Dynamic Models (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3426004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文阐述了序列蒙特卡罗(SMC)方法在逼近动态随机一般均衡(DSGE)模型后验分布中的有效性。我们展示了如何自适应地选择回火计划,记录了用于“在线”估计的广义数据回火的准确性和运行时优势(即,在新数据可用时重新估计模型),并提供了由SMC方法很好地捕获的多模态后检的示例。然后,我们使用DSGE模型的在线估计计算伪样本外密度预测,并研究预测性能对先验分布变化的敏感性。我们发现,通过增加先验方差使先验信息更少(与文献中使用的基准先验相比)并不会导致预测准确性的恶化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Estimation of DSGE Models
This paper illustrates the usefulness of sequential Monte Carlo (SMC) methods in approximating dynamic stochastic general equilibrium (DSGE) model posterior distributions. We show how the tempering schedule can be chosen adaptively, document the accuracy and runtime benefits of generalized data tempering for ‘online’ estimation (that is, re-estimating a model as new data become available), and provide examples of multimodal posteriors that are well captured by SMC methods. We then use the online estimation of the DSGE model to compute pseudo-out-of-sample density forecasts and study the sensitivity of the predictive performance to changes in the prior distribution. We find that making priors less informative (compared with the benchmark priors used in the literature) by increasing the prior variance does not lead to a deterioration of forecast accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信