{"title":"飞艇摆动动力学参数辨识","authors":"Qiuyang Tao, Jaeseok Cha, Mengxue Hou, Fumin Zhang","doi":"10.1109/ICARCV.2018.8581376","DOIUrl":null,"url":null,"abstract":"Indoor miniature autonomous blimp (MAB) is a small-sized aerial platform with outstanding safety and flight endurance. A detailed six-degree-of-freedom (6DOF) dynamics model is critical for controller design and motion simulation. This paper presents the identification of the rotation-related parameters of the blimp dynamics model through swing motion of the robot. A pendulum-like grey box model is constructed to identify the parameters from physical measurements and system identification experiments. The pendulum-like dynamics model with identified parameters is then linearized for future controller design and validated with experimental data.","PeriodicalId":395380,"journal":{"name":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"87 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Parameter Identification of Blimp Dynamics through Swinging Motion\",\"authors\":\"Qiuyang Tao, Jaeseok Cha, Mengxue Hou, Fumin Zhang\",\"doi\":\"10.1109/ICARCV.2018.8581376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor miniature autonomous blimp (MAB) is a small-sized aerial platform with outstanding safety and flight endurance. A detailed six-degree-of-freedom (6DOF) dynamics model is critical for controller design and motion simulation. This paper presents the identification of the rotation-related parameters of the blimp dynamics model through swing motion of the robot. A pendulum-like grey box model is constructed to identify the parameters from physical measurements and system identification experiments. The pendulum-like dynamics model with identified parameters is then linearized for future controller design and validated with experimental data.\",\"PeriodicalId\":395380,\"journal\":{\"name\":\"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)\",\"volume\":\"87 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCV.2018.8581376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2018.8581376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parameter Identification of Blimp Dynamics through Swinging Motion
Indoor miniature autonomous blimp (MAB) is a small-sized aerial platform with outstanding safety and flight endurance. A detailed six-degree-of-freedom (6DOF) dynamics model is critical for controller design and motion simulation. This paper presents the identification of the rotation-related parameters of the blimp dynamics model through swing motion of the robot. A pendulum-like grey box model is constructed to identify the parameters from physical measurements and system identification experiments. The pendulum-like dynamics model with identified parameters is then linearized for future controller design and validated with experimental data.