数据可视化在QlikView改进医疗保险管理中的应用

Mwirigi Kiula, C. Chege, K. Kahenya
{"title":"数据可视化在QlikView改进医疗保险管理中的应用","authors":"Mwirigi Kiula, C. Chege, K. Kahenya","doi":"10.23919/ISTAFRICA.2019.8764880","DOIUrl":null,"url":null,"abstract":"The healthcare insurance industry would be grounded in the absence of quality business intelligence, data analytics and visualization. Appropriate claims ratio, controls on budgetary limits and stable claims pipeline are essential to profitability, market share and customer delight. Analysis of claims was carried out monthly and quarterly between 2014 and 2018. QlikView has been applied to obtain deeper insights into healthcare insurance data from a purposively selected healthcare insurance service provider in Kenya. Data analytics revealed hitherto unbeknown data integrity issues, cost management pointers and case management insights, scheme performance to guide premium entitlement and ailment cost burden management. QlikView is recommended for simple and easily-deployable data analytics application. The human intervention and the overheads of data harvesting for QlikView analytics can be reduced by integration of QlikView on the databases into the future of application in the healthcare insurance industry. Application of simple tools, QlikView is recommended for data analytics and visualization.","PeriodicalId":420572,"journal":{"name":"2019 IST-Africa Week Conference (IST-Africa)","volume":"87 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Data Visualization for Improved Healthcare Insurance Management using QlikView\",\"authors\":\"Mwirigi Kiula, C. Chege, K. Kahenya\",\"doi\":\"10.23919/ISTAFRICA.2019.8764880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The healthcare insurance industry would be grounded in the absence of quality business intelligence, data analytics and visualization. Appropriate claims ratio, controls on budgetary limits and stable claims pipeline are essential to profitability, market share and customer delight. Analysis of claims was carried out monthly and quarterly between 2014 and 2018. QlikView has been applied to obtain deeper insights into healthcare insurance data from a purposively selected healthcare insurance service provider in Kenya. Data analytics revealed hitherto unbeknown data integrity issues, cost management pointers and case management insights, scheme performance to guide premium entitlement and ailment cost burden management. QlikView is recommended for simple and easily-deployable data analytics application. The human intervention and the overheads of data harvesting for QlikView analytics can be reduced by integration of QlikView on the databases into the future of application in the healthcare insurance industry. Application of simple tools, QlikView is recommended for data analytics and visualization.\",\"PeriodicalId\":420572,\"journal\":{\"name\":\"2019 IST-Africa Week Conference (IST-Africa)\",\"volume\":\"87 12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IST-Africa Week Conference (IST-Africa)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ISTAFRICA.2019.8764880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IST-Africa Week Conference (IST-Africa)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ISTAFRICA.2019.8764880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

医疗保险行业将建立在缺乏高质量商业智能、数据分析和可视化的基础上。适当的理赔比例,控制预算限制和稳定的理赔渠道对盈利能力,市场份额和客户满意度至关重要。2014年至2018年期间,每月和每季度对索赔进行分析。QlikView已被应用于从肯尼亚有目的地选择的医疗保险服务提供商那里获得对医疗保险数据的更深入的见解。数据分析揭示了迄今为止未知的数据完整性问题、成本管理指针和案例管理见解、方案绩效,以指导保费权利和疾病成本负担管理。QlikView推荐用于简单且易于部署的数据分析应用程序。通过将数据库上的QlikView集成到医疗保险行业的未来应用程序中,可以减少人为干预和QlikView分析的数据收集开销。应用简单的工具,QlikView推荐用于数据分析和可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Data Visualization for Improved Healthcare Insurance Management using QlikView
The healthcare insurance industry would be grounded in the absence of quality business intelligence, data analytics and visualization. Appropriate claims ratio, controls on budgetary limits and stable claims pipeline are essential to profitability, market share and customer delight. Analysis of claims was carried out monthly and quarterly between 2014 and 2018. QlikView has been applied to obtain deeper insights into healthcare insurance data from a purposively selected healthcare insurance service provider in Kenya. Data analytics revealed hitherto unbeknown data integrity issues, cost management pointers and case management insights, scheme performance to guide premium entitlement and ailment cost burden management. QlikView is recommended for simple and easily-deployable data analytics application. The human intervention and the overheads of data harvesting for QlikView analytics can be reduced by integration of QlikView on the databases into the future of application in the healthcare insurance industry. Application of simple tools, QlikView is recommended for data analytics and visualization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信