{"title":"基于cuda并行快速自编码器的高维稀疏矩阵潜在因子分析","authors":"Fei Luo, Zhigang Liu","doi":"10.1109/ICCSI53130.2021.9736205","DOIUrl":null,"url":null,"abstract":"An AutoEncoder (AE)-based latent factor analysis model can precisely extract non-linear latent features from a High-dimensional and Sparse (HiDS) matrix from a recommender system. However, it requires prefilling an HiDS matrix's unknown data to achieve its compatibility with a GPU platform, which leads to tremendous consumption of computation and storage. To address this issue, this paper presents a CUDA-Parallelized Fast AutoEncoder (CPFAE) for highly efficient latent factor analysis on a high-dimensional and sparse matrix from a recommender system. Its main idea is two-fold: a) implementing mini-batch-based weight update in the form of efficient sparse matrix multiplication to train the neural network, and b) implementing an efficient computation model for a compressed sparse matrix to make full use of a GPU platform's computation power. Experimental results on two HiDS matrices from real applications demonstrate that compared with a state-of-the-art AE-based model, CPFAE achieves significant gain in computation and storage efficiency.","PeriodicalId":175851,"journal":{"name":"2021 International Conference on Cyber-Physical Social Intelligence (ICCSI)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A CUDA-Parallelized Fast AutoEncoder for Highly Efficient Latent Factor Analysis on High-Dimensional and Sparse Matrices from Recommender Systems\",\"authors\":\"Fei Luo, Zhigang Liu\",\"doi\":\"10.1109/ICCSI53130.2021.9736205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An AutoEncoder (AE)-based latent factor analysis model can precisely extract non-linear latent features from a High-dimensional and Sparse (HiDS) matrix from a recommender system. However, it requires prefilling an HiDS matrix's unknown data to achieve its compatibility with a GPU platform, which leads to tremendous consumption of computation and storage. To address this issue, this paper presents a CUDA-Parallelized Fast AutoEncoder (CPFAE) for highly efficient latent factor analysis on a high-dimensional and sparse matrix from a recommender system. Its main idea is two-fold: a) implementing mini-batch-based weight update in the form of efficient sparse matrix multiplication to train the neural network, and b) implementing an efficient computation model for a compressed sparse matrix to make full use of a GPU platform's computation power. Experimental results on two HiDS matrices from real applications demonstrate that compared with a state-of-the-art AE-based model, CPFAE achieves significant gain in computation and storage efficiency.\",\"PeriodicalId\":175851,\"journal\":{\"name\":\"2021 International Conference on Cyber-Physical Social Intelligence (ICCSI)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Cyber-Physical Social Intelligence (ICCSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSI53130.2021.9736205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Cyber-Physical Social Intelligence (ICCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSI53130.2021.9736205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A CUDA-Parallelized Fast AutoEncoder for Highly Efficient Latent Factor Analysis on High-Dimensional and Sparse Matrices from Recommender Systems
An AutoEncoder (AE)-based latent factor analysis model can precisely extract non-linear latent features from a High-dimensional and Sparse (HiDS) matrix from a recommender system. However, it requires prefilling an HiDS matrix's unknown data to achieve its compatibility with a GPU platform, which leads to tremendous consumption of computation and storage. To address this issue, this paper presents a CUDA-Parallelized Fast AutoEncoder (CPFAE) for highly efficient latent factor analysis on a high-dimensional and sparse matrix from a recommender system. Its main idea is two-fold: a) implementing mini-batch-based weight update in the form of efficient sparse matrix multiplication to train the neural network, and b) implementing an efficient computation model for a compressed sparse matrix to make full use of a GPU platform's computation power. Experimental results on two HiDS matrices from real applications demonstrate that compared with a state-of-the-art AE-based model, CPFAE achieves significant gain in computation and storage efficiency.