基于cuda并行快速自编码器的高维稀疏矩阵潜在因子分析

Fei Luo, Zhigang Liu
{"title":"基于cuda并行快速自编码器的高维稀疏矩阵潜在因子分析","authors":"Fei Luo, Zhigang Liu","doi":"10.1109/ICCSI53130.2021.9736205","DOIUrl":null,"url":null,"abstract":"An AutoEncoder (AE)-based latent factor analysis model can precisely extract non-linear latent features from a High-dimensional and Sparse (HiDS) matrix from a recommender system. However, it requires prefilling an HiDS matrix's unknown data to achieve its compatibility with a GPU platform, which leads to tremendous consumption of computation and storage. To address this issue, this paper presents a CUDA-Parallelized Fast AutoEncoder (CPFAE) for highly efficient latent factor analysis on a high-dimensional and sparse matrix from a recommender system. Its main idea is two-fold: a) implementing mini-batch-based weight update in the form of efficient sparse matrix multiplication to train the neural network, and b) implementing an efficient computation model for a compressed sparse matrix to make full use of a GPU platform's computation power. Experimental results on two HiDS matrices from real applications demonstrate that compared with a state-of-the-art AE-based model, CPFAE achieves significant gain in computation and storage efficiency.","PeriodicalId":175851,"journal":{"name":"2021 International Conference on Cyber-Physical Social Intelligence (ICCSI)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A CUDA-Parallelized Fast AutoEncoder for Highly Efficient Latent Factor Analysis on High-Dimensional and Sparse Matrices from Recommender Systems\",\"authors\":\"Fei Luo, Zhigang Liu\",\"doi\":\"10.1109/ICCSI53130.2021.9736205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An AutoEncoder (AE)-based latent factor analysis model can precisely extract non-linear latent features from a High-dimensional and Sparse (HiDS) matrix from a recommender system. However, it requires prefilling an HiDS matrix's unknown data to achieve its compatibility with a GPU platform, which leads to tremendous consumption of computation and storage. To address this issue, this paper presents a CUDA-Parallelized Fast AutoEncoder (CPFAE) for highly efficient latent factor analysis on a high-dimensional and sparse matrix from a recommender system. Its main idea is two-fold: a) implementing mini-batch-based weight update in the form of efficient sparse matrix multiplication to train the neural network, and b) implementing an efficient computation model for a compressed sparse matrix to make full use of a GPU platform's computation power. Experimental results on two HiDS matrices from real applications demonstrate that compared with a state-of-the-art AE-based model, CPFAE achieves significant gain in computation and storage efficiency.\",\"PeriodicalId\":175851,\"journal\":{\"name\":\"2021 International Conference on Cyber-Physical Social Intelligence (ICCSI)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Cyber-Physical Social Intelligence (ICCSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSI53130.2021.9736205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Cyber-Physical Social Intelligence (ICCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSI53130.2021.9736205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于AutoEncoder (AE)的潜在因素分析模型可以从推荐系统的高维稀疏(HiDS)矩阵中精确提取非线性潜在特征。然而,它需要预先填充HiDS矩阵的未知数据来实现与GPU平台的兼容,这导致了巨大的计算和存储消耗。为了解决这个问题,本文提出了一种cuda并行快速自动编码器(CPFAE),用于对来自推荐系统的高维稀疏矩阵进行高效的潜在因素分析。其主要思想有两个方面:a)以高效的稀疏矩阵乘法的形式实现基于小批量的权值更新来训练神经网络;b)对压缩稀疏矩阵实现高效的计算模型,以充分利用GPU平台的计算能力。在实际应用的两个HiDS矩阵上的实验结果表明,与基于ae的最先进模型相比,CPFAE在计算和存储效率方面取得了显著的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A CUDA-Parallelized Fast AutoEncoder for Highly Efficient Latent Factor Analysis on High-Dimensional and Sparse Matrices from Recommender Systems
An AutoEncoder (AE)-based latent factor analysis model can precisely extract non-linear latent features from a High-dimensional and Sparse (HiDS) matrix from a recommender system. However, it requires prefilling an HiDS matrix's unknown data to achieve its compatibility with a GPU platform, which leads to tremendous consumption of computation and storage. To address this issue, this paper presents a CUDA-Parallelized Fast AutoEncoder (CPFAE) for highly efficient latent factor analysis on a high-dimensional and sparse matrix from a recommender system. Its main idea is two-fold: a) implementing mini-batch-based weight update in the form of efficient sparse matrix multiplication to train the neural network, and b) implementing an efficient computation model for a compressed sparse matrix to make full use of a GPU platform's computation power. Experimental results on two HiDS matrices from real applications demonstrate that compared with a state-of-the-art AE-based model, CPFAE achieves significant gain in computation and storage efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信