{"title":"在印度语境下使用CNN与对数梅尔谱图特征的口语识别","authors":"Sreedhar Potla, D. B. V. Vardhan","doi":"10.30534/ijatcse/2022/071162022","DOIUrl":null,"url":null,"abstract":"This study demonstrates a novel application of Log Mel Spectrogram coefficients to image classification via Convolutional Neural Networks (CNN). The acoustic features obtained as log mel spectrogram images are used in this article. Log mel spectrogram pictures, a novel technique, ensure that the system is noise-resistant and free of channel mismatch. The majority of Indian languages from our own dataset were used.With the use of auditory features integrated in CNN, we hope to quickly and accurately detect a language. InceptionV3 and Resnet50 models are also used in this study for performance analysis. When compared to the existing system, these approaches achieved significant improvements in language identification accuracy.","PeriodicalId":129636,"journal":{"name":"International Journal of Advanced Trends in Computer Science and Engineering","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spoken Language Identification using CNN with Log Mel Spectrogram Features in Indian Context\",\"authors\":\"Sreedhar Potla, D. B. V. Vardhan\",\"doi\":\"10.30534/ijatcse/2022/071162022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study demonstrates a novel application of Log Mel Spectrogram coefficients to image classification via Convolutional Neural Networks (CNN). The acoustic features obtained as log mel spectrogram images are used in this article. Log mel spectrogram pictures, a novel technique, ensure that the system is noise-resistant and free of channel mismatch. The majority of Indian languages from our own dataset were used.With the use of auditory features integrated in CNN, we hope to quickly and accurately detect a language. InceptionV3 and Resnet50 models are also used in this study for performance analysis. When compared to the existing system, these approaches achieved significant improvements in language identification accuracy.\",\"PeriodicalId\":129636,\"journal\":{\"name\":\"International Journal of Advanced Trends in Computer Science and Engineering\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Trends in Computer Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30534/ijatcse/2022/071162022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Trends in Computer Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30534/ijatcse/2022/071162022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spoken Language Identification using CNN with Log Mel Spectrogram Features in Indian Context
This study demonstrates a novel application of Log Mel Spectrogram coefficients to image classification via Convolutional Neural Networks (CNN). The acoustic features obtained as log mel spectrogram images are used in this article. Log mel spectrogram pictures, a novel technique, ensure that the system is noise-resistant and free of channel mismatch. The majority of Indian languages from our own dataset were used.With the use of auditory features integrated in CNN, we hope to quickly and accurately detect a language. InceptionV3 and Resnet50 models are also used in this study for performance analysis. When compared to the existing system, these approaches achieved significant improvements in language identification accuracy.