在印度语境下使用CNN与对数梅尔谱图特征的口语识别

Sreedhar Potla, D. B. V. Vardhan
{"title":"在印度语境下使用CNN与对数梅尔谱图特征的口语识别","authors":"Sreedhar Potla, D. B. V. Vardhan","doi":"10.30534/ijatcse/2022/071162022","DOIUrl":null,"url":null,"abstract":"This study demonstrates a novel application of Log Mel Spectrogram coefficients to image classification via Convolutional Neural Networks (CNN). The acoustic features obtained as log mel spectrogram images are used in this article. Log mel spectrogram pictures, a novel technique, ensure that the system is noise-resistant and free of channel mismatch. The majority of Indian languages from our own dataset were used.With the use of auditory features integrated in CNN, we hope to quickly and accurately detect a language. InceptionV3 and Resnet50 models are also used in this study for performance analysis. When compared to the existing system, these approaches achieved significant improvements in language identification accuracy.","PeriodicalId":129636,"journal":{"name":"International Journal of Advanced Trends in Computer Science and Engineering","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spoken Language Identification using CNN with Log Mel Spectrogram Features in Indian Context\",\"authors\":\"Sreedhar Potla, D. B. V. Vardhan\",\"doi\":\"10.30534/ijatcse/2022/071162022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study demonstrates a novel application of Log Mel Spectrogram coefficients to image classification via Convolutional Neural Networks (CNN). The acoustic features obtained as log mel spectrogram images are used in this article. Log mel spectrogram pictures, a novel technique, ensure that the system is noise-resistant and free of channel mismatch. The majority of Indian languages from our own dataset were used.With the use of auditory features integrated in CNN, we hope to quickly and accurately detect a language. InceptionV3 and Resnet50 models are also used in this study for performance analysis. When compared to the existing system, these approaches achieved significant improvements in language identification accuracy.\",\"PeriodicalId\":129636,\"journal\":{\"name\":\"International Journal of Advanced Trends in Computer Science and Engineering\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Trends in Computer Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30534/ijatcse/2022/071162022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Trends in Computer Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30534/ijatcse/2022/071162022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究展示了对数梅尔谱图系数在卷积神经网络(CNN)图像分类中的新应用。本文采用对数谱图图像获得的声学特征。对数谱图图像是一种新颖的技术,保证了系统的抗噪声和无信道失配。我们使用了我们自己数据集中的大多数印度语言。利用CNN中集成的听觉特征,我们希望能够快速准确地检测出一种语言。本研究还使用了InceptionV3和Resnet50模型进行性能分析。与现有系统相比,这些方法在语言识别准确率上取得了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spoken Language Identification using CNN with Log Mel Spectrogram Features in Indian Context
This study demonstrates a novel application of Log Mel Spectrogram coefficients to image classification via Convolutional Neural Networks (CNN). The acoustic features obtained as log mel spectrogram images are used in this article. Log mel spectrogram pictures, a novel technique, ensure that the system is noise-resistant and free of channel mismatch. The majority of Indian languages from our own dataset were used.With the use of auditory features integrated in CNN, we hope to quickly and accurately detect a language. InceptionV3 and Resnet50 models are also used in this study for performance analysis. When compared to the existing system, these approaches achieved significant improvements in language identification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信