基于RVM的综合多元退化预测

P. Jiang, B. Guo, Shiqi Liu, Y. Xing
{"title":"基于RVM的综合多元退化预测","authors":"P. Jiang, B. Guo, Shiqi Liu, Y. Xing","doi":"10.1109/SYSENG.2017.8088323","DOIUrl":null,"url":null,"abstract":"Degradation prediction is important for safety related products to avoid failures. When the degradations of multiple parameters of a product is taken into account, traditional univariate degradation prediction method is not applicable, especially when the parameters are correlated. To cope with this problem, Mahalanobis distance is proposed, to combine multiple parameters into one unified index. Then healthy baselines of the product are determined based on the unified index. Finally, the method of Relevance Vector Machines is applied to predict the change trend of the unified index and find the failure time. A case study is presented to prove the validity of our proposed method.","PeriodicalId":354846,"journal":{"name":"2017 IEEE International Systems Engineering Symposium (ISSE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integrated multivariate degradation prediction by RVM\",\"authors\":\"P. Jiang, B. Guo, Shiqi Liu, Y. Xing\",\"doi\":\"10.1109/SYSENG.2017.8088323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Degradation prediction is important for safety related products to avoid failures. When the degradations of multiple parameters of a product is taken into account, traditional univariate degradation prediction method is not applicable, especially when the parameters are correlated. To cope with this problem, Mahalanobis distance is proposed, to combine multiple parameters into one unified index. Then healthy baselines of the product are determined based on the unified index. Finally, the method of Relevance Vector Machines is applied to predict the change trend of the unified index and find the failure time. A case study is presented to prove the validity of our proposed method.\",\"PeriodicalId\":354846,\"journal\":{\"name\":\"2017 IEEE International Systems Engineering Symposium (ISSE)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Systems Engineering Symposium (ISSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYSENG.2017.8088323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Systems Engineering Symposium (ISSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSENG.2017.8088323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

降解预测是安全相关产品避免失效的重要手段。当考虑一个产品的多个参数的退化时,传统的单变量退化预测方法不适用,特别是当参数相互关联时。针对这一问题,提出了马氏距离,将多个参数合并为一个统一的指标。然后根据统一的指标确定产品的健康基线。最后,应用相关向量机方法预测统一指标的变化趋势,找出故障时间。最后通过一个实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated multivariate degradation prediction by RVM
Degradation prediction is important for safety related products to avoid failures. When the degradations of multiple parameters of a product is taken into account, traditional univariate degradation prediction method is not applicable, especially when the parameters are correlated. To cope with this problem, Mahalanobis distance is proposed, to combine multiple parameters into one unified index. Then healthy baselines of the product are determined based on the unified index. Finally, the method of Relevance Vector Machines is applied to predict the change trend of the unified index and find the failure time. A case study is presented to prove the validity of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信