零误差通信通过量子信道和量子Lovász θ-函数

R. Duan, S. Severini, A. Winter
{"title":"零误差通信通过量子信道和量子Lovász θ-函数","authors":"R. Duan, S. Severini, A. Winter","doi":"10.1109/ISIT.2011.6034211","DOIUrl":null,"url":null,"abstract":"We study the quantum channel version of Shannon's zero-error capacity problem. Motivated by recent progress on this question, we propose to consider a certain linear space operators as the quantum generalisation of the adjacency matrix, in terms of which the plain, quantum and entanglement-assisted capacity can be formulated, and for which we show some new basic properties. Most importantly, we define a quantum version of Lovász' famous υ function, as the norm-completion (or stabilisation) of a “naive” generalisation of υ. We go on to show that this function upper bounds the number of entanglement-assisted zero-error messages, that it is given by a semidefinite programme, whose dual we write down explicitly, and that it is multiplicative with respect to the natural (strong) graph product. We explore various other properties of the new quantity, which reduces to Lovász' original υ in the classical case, give several applications, and propose to study the linear spaces of operators associated to channels as “non-commutative graphs”, using the language of operator systems and Hilbert modules.","PeriodicalId":208375,"journal":{"name":"2011 IEEE International Symposium on Information Theory Proceedings","volume":"87 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Zero-error communication via quantum channels and a quantum Lovász θ-function\",\"authors\":\"R. Duan, S. Severini, A. Winter\",\"doi\":\"10.1109/ISIT.2011.6034211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the quantum channel version of Shannon's zero-error capacity problem. Motivated by recent progress on this question, we propose to consider a certain linear space operators as the quantum generalisation of the adjacency matrix, in terms of which the plain, quantum and entanglement-assisted capacity can be formulated, and for which we show some new basic properties. Most importantly, we define a quantum version of Lovász' famous υ function, as the norm-completion (or stabilisation) of a “naive” generalisation of υ. We go on to show that this function upper bounds the number of entanglement-assisted zero-error messages, that it is given by a semidefinite programme, whose dual we write down explicitly, and that it is multiplicative with respect to the natural (strong) graph product. We explore various other properties of the new quantity, which reduces to Lovász' original υ in the classical case, give several applications, and propose to study the linear spaces of operators associated to channels as “non-commutative graphs”, using the language of operator systems and Hilbert modules.\",\"PeriodicalId\":208375,\"journal\":{\"name\":\"2011 IEEE International Symposium on Information Theory Proceedings\",\"volume\":\"87 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Information Theory Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2011.6034211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Information Theory Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2011.6034211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

我们研究了香农零误差容量问题的量子信道版本。基于这一问题的最新进展,我们提出将一定的线性空间算子作为邻接矩阵的量子泛化,以此来表述平面、量子和纠缠辅助的能力,并展示了一些新的基本性质。最重要的是,我们定义了Lovász著名的υ函数的量子版本,作为υ的“幼稚”泛化的规范完成(或稳定)。我们继续证明这个函数是纠缠辅助零错误信息数目的上界,它是由一个半定规划给出的,我们明确地写下了它的对偶,并且它是自然(强)图积的乘积。我们探索了新量的各种其他性质,它在经典情况下约为Lovász'原始υ,给出了几个应用,并提出使用算子系统和希尔伯特模块的语言研究与通道相关的算子的线性空间作为“非交换图”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero-error communication via quantum channels and a quantum Lovász θ-function
We study the quantum channel version of Shannon's zero-error capacity problem. Motivated by recent progress on this question, we propose to consider a certain linear space operators as the quantum generalisation of the adjacency matrix, in terms of which the plain, quantum and entanglement-assisted capacity can be formulated, and for which we show some new basic properties. Most importantly, we define a quantum version of Lovász' famous υ function, as the norm-completion (or stabilisation) of a “naive” generalisation of υ. We go on to show that this function upper bounds the number of entanglement-assisted zero-error messages, that it is given by a semidefinite programme, whose dual we write down explicitly, and that it is multiplicative with respect to the natural (strong) graph product. We explore various other properties of the new quantity, which reduces to Lovász' original υ in the classical case, give several applications, and propose to study the linear spaces of operators associated to channels as “non-commutative graphs”, using the language of operator systems and Hilbert modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信