MIMO雷达系统中目标定位估计的Ziv - Zakai下界

Vlad M. Chiriac, A. Haimovich
{"title":"MIMO雷达系统中目标定位估计的Ziv - Zakai下界","authors":"Vlad M. Chiriac, A. Haimovich","doi":"10.1109/RADAR.2010.5494535","DOIUrl":null,"url":null,"abstract":"This paper presents the derivation of the Ziv-Zakai bound (ZZB) for the localization problem in a MIMO radar system. The target is positioned in the near-field of a network of radars of arbitrary geometry. The radars have ideal mutual time and phase synchronization. The target location is estimated by coherent processing exploiting the amplitude and phase information between pairs of radars. An analytical expression is developed for the ZZB relating the estimation mean square error (MSE) to the carrier frequency, signal bandwidth, the number of sensors, and their location. From numerical calculations of the bound, three regions of signal-to-noise ratio (SNR) can be distinguished in the performance of the location estimator: a noise-dominated region, an ambiguity region, and an ambiguity free region. In the noise-dominated region, the signals received by the radars are too weak, and thus the localization error is limited only by the a priori information about the location of the target. In the ambiguity region, the performance of the location estimator is affected by sidelobes. In the ambiguity free region, estimation errors are very small and the ZZB approaches the Cramer-Rao lower bound (CRLB).","PeriodicalId":125591,"journal":{"name":"2010 IEEE Radar Conference","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Ziv — Zakai lower bound on target localization estimation in MIMO radar systems\",\"authors\":\"Vlad M. Chiriac, A. Haimovich\",\"doi\":\"10.1109/RADAR.2010.5494535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the derivation of the Ziv-Zakai bound (ZZB) for the localization problem in a MIMO radar system. The target is positioned in the near-field of a network of radars of arbitrary geometry. The radars have ideal mutual time and phase synchronization. The target location is estimated by coherent processing exploiting the amplitude and phase information between pairs of radars. An analytical expression is developed for the ZZB relating the estimation mean square error (MSE) to the carrier frequency, signal bandwidth, the number of sensors, and their location. From numerical calculations of the bound, three regions of signal-to-noise ratio (SNR) can be distinguished in the performance of the location estimator: a noise-dominated region, an ambiguity region, and an ambiguity free region. In the noise-dominated region, the signals received by the radars are too weak, and thus the localization error is limited only by the a priori information about the location of the target. In the ambiguity region, the performance of the location estimator is affected by sidelobes. In the ambiguity free region, estimation errors are very small and the ZZB approaches the Cramer-Rao lower bound (CRLB).\",\"PeriodicalId\":125591,\"journal\":{\"name\":\"2010 IEEE Radar Conference\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2010.5494535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2010.5494535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文给出了MIMO雷达定位问题的Ziv-Zakai界(ZZB)的推导。目标被定位在任意几何形状的雷达网络的近场。雷达具有理想的时间和相位同步。利用雷达对之间的幅值和相位信息进行相干处理,估计目标位置。建立了估计均方误差(MSE)与载波频率、信号带宽、传感器数量及其位置的解析表达式。通过对边界的数值计算,可以将位置估计器的性能区分为三个信噪比区域:噪声主导区、模糊区和无模糊区。在噪声占主导的区域,雷达接收到的信号太弱,定位误差仅受目标位置的先验信息限制。在模糊区域,位置估计器的性能受到副瓣的影响。在无模糊区域,估计误差非常小,ZZB接近crmer - rao下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ziv — Zakai lower bound on target localization estimation in MIMO radar systems
This paper presents the derivation of the Ziv-Zakai bound (ZZB) for the localization problem in a MIMO radar system. The target is positioned in the near-field of a network of radars of arbitrary geometry. The radars have ideal mutual time and phase synchronization. The target location is estimated by coherent processing exploiting the amplitude and phase information between pairs of radars. An analytical expression is developed for the ZZB relating the estimation mean square error (MSE) to the carrier frequency, signal bandwidth, the number of sensors, and their location. From numerical calculations of the bound, three regions of signal-to-noise ratio (SNR) can be distinguished in the performance of the location estimator: a noise-dominated region, an ambiguity region, and an ambiguity free region. In the noise-dominated region, the signals received by the radars are too weak, and thus the localization error is limited only by the a priori information about the location of the target. In the ambiguity region, the performance of the location estimator is affected by sidelobes. In the ambiguity free region, estimation errors are very small and the ZZB approaches the Cramer-Rao lower bound (CRLB).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信