超越半鞅的投资组合优化:影子价格和分数布朗运动

Christoph Czichowsky, W. Schachermayer
{"title":"超越半鞅的投资组合优化:影子价格和分数布朗运动","authors":"Christoph Czichowsky, W. Schachermayer","doi":"10.1214/16-AAP1234","DOIUrl":null,"url":null,"abstract":"While absence of arbitrage in frictionless financial markets requires price processes to be semimartingales, non-semimartingales can be used to model prices in an arbitrage-free way, if proportional transaction costs are taken into account. In this paper, we show, for a class of price processes which are not necessarily semimartingales, the existence of an optimal trading strategy for utility maximisation under transaction costs by establishing the existence of a so-called shadow price. This is a semimartingale price process, taking values in the bid ask spread, such that frictionless trading for that price process leads to the same optimal strategy and utility as the original problem under transaction costs. Our results combine arguments from convex duality with the stickiness condition introduced by P. Guasoni. They apply in particular to exponential utility and geometric fractional Brownian motion. In this case, the shadow price is an Ito process. As a consequence we obtain a rather surprising result on the pathwise behaviour of fractional Brownian motion: the trajectories may touch an Ito process in a one-sided manner without reflection.","PeriodicalId":385109,"journal":{"name":"arXiv: Mathematical Finance","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Portfolio optimisation beyond semimartingales: shadow prices and fractional Brownian motion\",\"authors\":\"Christoph Czichowsky, W. Schachermayer\",\"doi\":\"10.1214/16-AAP1234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While absence of arbitrage in frictionless financial markets requires price processes to be semimartingales, non-semimartingales can be used to model prices in an arbitrage-free way, if proportional transaction costs are taken into account. In this paper, we show, for a class of price processes which are not necessarily semimartingales, the existence of an optimal trading strategy for utility maximisation under transaction costs by establishing the existence of a so-called shadow price. This is a semimartingale price process, taking values in the bid ask spread, such that frictionless trading for that price process leads to the same optimal strategy and utility as the original problem under transaction costs. Our results combine arguments from convex duality with the stickiness condition introduced by P. Guasoni. They apply in particular to exponential utility and geometric fractional Brownian motion. In this case, the shadow price is an Ito process. As a consequence we obtain a rather surprising result on the pathwise behaviour of fractional Brownian motion: the trajectories may touch an Ito process in a one-sided manner without reflection.\",\"PeriodicalId\":385109,\"journal\":{\"name\":\"arXiv: Mathematical Finance\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/16-AAP1234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/16-AAP1234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

虽然在无摩擦的金融市场中没有套利要求价格过程是半套利的,但如果考虑到比例交易成本,则可以使用非半套利来以无套利的方式模拟价格。在本文中,我们通过建立所谓的影子价格的存在性,证明了一类不一定是半鞅的价格过程在交易成本下存在效用最大化的最优交易策略。这是一个半鞅价格过程,在买卖价差中取值,这样,该价格过程的无摩擦交易导致与交易成本下的原始问题相同的最优策略和效用。我们的结果结合了凸对偶的论点和P. Guasoni引入的粘性条件。它们特别适用于指数效用和几何分数布朗运动。在这种情况下,影子价格是伊藤过程。因此,我们得到了分数布朗运动的路径行为的一个相当令人惊讶的结果:轨迹可能以单方面的方式接触伊藤过程而不反射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Portfolio optimisation beyond semimartingales: shadow prices and fractional Brownian motion
While absence of arbitrage in frictionless financial markets requires price processes to be semimartingales, non-semimartingales can be used to model prices in an arbitrage-free way, if proportional transaction costs are taken into account. In this paper, we show, for a class of price processes which are not necessarily semimartingales, the existence of an optimal trading strategy for utility maximisation under transaction costs by establishing the existence of a so-called shadow price. This is a semimartingale price process, taking values in the bid ask spread, such that frictionless trading for that price process leads to the same optimal strategy and utility as the original problem under transaction costs. Our results combine arguments from convex duality with the stickiness condition introduced by P. Guasoni. They apply in particular to exponential utility and geometric fractional Brownian motion. In this case, the shadow price is an Ito process. As a consequence we obtain a rather surprising result on the pathwise behaviour of fractional Brownian motion: the trajectories may touch an Ito process in a one-sided manner without reflection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信