积分-微分最优控制问题变分离散混合有限元方法的后验误差估计

Zuliang Lu, Dayong Liu
{"title":"积分-微分最优控制问题变分离散混合有限元方法的后验误差估计","authors":"Zuliang Lu, Dayong Liu","doi":"10.1109/ICEEE.2013.6676039","DOIUrl":null,"url":null,"abstract":"In this paper we study a posteriori error estimates of all discretization parameters for quadratic convex optimal control problems governed by integro-differential equations by using the variational discretization mixed finite element methods. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not approximated. By applying some error estimates results of mixed finite element methods for integro-differential equations, we derive a posteriori error estimates both for the coupled state and the control approximation of the optimal control problem.","PeriodicalId":226547,"journal":{"name":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A posteriori error estimates of variational discretization mixed finite element methods for integro-differential optimal control problem\",\"authors\":\"Zuliang Lu, Dayong Liu\",\"doi\":\"10.1109/ICEEE.2013.6676039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study a posteriori error estimates of all discretization parameters for quadratic convex optimal control problems governed by integro-differential equations by using the variational discretization mixed finite element methods. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not approximated. By applying some error estimates results of mixed finite element methods for integro-differential equations, we derive a posteriori error estimates both for the coupled state and the control approximation of the optimal control problem.\",\"PeriodicalId\":226547,\"journal\":{\"name\":\"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2013.6676039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2013.6676039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用变分离散化混合有限元方法,研究了积分-微分方程二次凸最优控制问题所有离散化参数的后验误差估计。状态和共状态由最低阶Raviart-Thomas混合有限元空间逼近,控制不逼近。利用积分-微分方程混合有限元方法的一些误差估计结果,导出了最优控制问题的耦合状态和控制近似的后验误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A posteriori error estimates of variational discretization mixed finite element methods for integro-differential optimal control problem
In this paper we study a posteriori error estimates of all discretization parameters for quadratic convex optimal control problems governed by integro-differential equations by using the variational discretization mixed finite element methods. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not approximated. By applying some error estimates results of mixed finite element methods for integro-differential equations, we derive a posteriori error estimates both for the coupled state and the control approximation of the optimal control problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信