{"title":"基于V2X通信的车辆队列中丢包和信道拥挤分析","authors":"Nagacharan Teja Tangirala, Anuj Abraham, Apratim Choudhury, Pranjal Vyas, Rongkai Zhang, J. Dauwels","doi":"10.1109/SSCI.2018.8628872","DOIUrl":null,"url":null,"abstract":"With the increase in road fatalities and energy consumption, there is a need to improve road traffic in terms of safety and fuel efficiency. Vehicle platooning is one of the areas in road transportation that can be improved to reduce road freight operational costs. In this paper, an MPC (Model Predictive Control) algorithm is formulated based on the combination of Constant Distance (CD) and Headway Time (HT) topology. The simulations are carried out for platooning of Heavy Duty Vehicles (HDVs) using an integrated simulation platform, which combines VISSIM, MATLAB and Network Simulator (NS3). Deliberate communication failures are introduced through NS3 to study the platoon behavior. Further, a solution is proposed to avoid the channel crowding issue. Simulations of the platoon controller indicate that the vehicles follow a desired speed and maintain a desired intervehicular distance. It is also found that the platoon controller avoids collisions due to consecutive packet drops. Finally, an improvement in Packet Delivery Ratio (PDR) is observed with the proposed solution to avoid channel crowding issue.","PeriodicalId":235735,"journal":{"name":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Analysis of Packet drops and Channel Crowding in Vehicle Platooning using V2X communication\",\"authors\":\"Nagacharan Teja Tangirala, Anuj Abraham, Apratim Choudhury, Pranjal Vyas, Rongkai Zhang, J. Dauwels\",\"doi\":\"10.1109/SSCI.2018.8628872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increase in road fatalities and energy consumption, there is a need to improve road traffic in terms of safety and fuel efficiency. Vehicle platooning is one of the areas in road transportation that can be improved to reduce road freight operational costs. In this paper, an MPC (Model Predictive Control) algorithm is formulated based on the combination of Constant Distance (CD) and Headway Time (HT) topology. The simulations are carried out for platooning of Heavy Duty Vehicles (HDVs) using an integrated simulation platform, which combines VISSIM, MATLAB and Network Simulator (NS3). Deliberate communication failures are introduced through NS3 to study the platoon behavior. Further, a solution is proposed to avoid the channel crowding issue. Simulations of the platoon controller indicate that the vehicles follow a desired speed and maintain a desired intervehicular distance. It is also found that the platoon controller avoids collisions due to consecutive packet drops. Finally, an improvement in Packet Delivery Ratio (PDR) is observed with the proposed solution to avoid channel crowding issue.\",\"PeriodicalId\":235735,\"journal\":{\"name\":\"2018 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"162 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI.2018.8628872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2018.8628872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of Packet drops and Channel Crowding in Vehicle Platooning using V2X communication
With the increase in road fatalities and energy consumption, there is a need to improve road traffic in terms of safety and fuel efficiency. Vehicle platooning is one of the areas in road transportation that can be improved to reduce road freight operational costs. In this paper, an MPC (Model Predictive Control) algorithm is formulated based on the combination of Constant Distance (CD) and Headway Time (HT) topology. The simulations are carried out for platooning of Heavy Duty Vehicles (HDVs) using an integrated simulation platform, which combines VISSIM, MATLAB and Network Simulator (NS3). Deliberate communication failures are introduced through NS3 to study the platoon behavior. Further, a solution is proposed to avoid the channel crowding issue. Simulations of the platoon controller indicate that the vehicles follow a desired speed and maintain a desired intervehicular distance. It is also found that the platoon controller avoids collisions due to consecutive packet drops. Finally, an improvement in Packet Delivery Ratio (PDR) is observed with the proposed solution to avoid channel crowding issue.