小定树图方相互正交不相交并的构造

R. El-Shanawany, A. El-Rokh, S. Nada, E. Sallam
{"title":"小定树图方相互正交不相交并的构造","authors":"R. El-Shanawany, A. El-Rokh, S. Nada, E. Sallam","doi":"10.1109/ICEEM52022.2021.9480661","DOIUrl":null,"url":null,"abstract":"A family of decompositions $\\mathcal{G} = \\left\\{ {{\\mathcal{G}_0},{\\mathcal{G}_1}, \\ldots \\ldots ,{\\mathcal{G}_{{\\text{r}} - {\\text{l}}}}} \\right.\\} $ of a complete bipartite graph Kn, n is a set of r mutually orthogonal graph squares (MOGS) if ${\\mathcal{G}_i}$ and ${\\mathcal{G}_j}$ are orthogonal for all i j, ∈{0, 1, … −, r 1}, and i ≠ j. For any subgraph G of Kn n, with n edges, N (n G, ) denotes the maximum number r in a largest possible set $\\mathcal{G} = \\left\\{ {{\\mathcal{G}_0},{\\mathcal{G}_1}, \\ldots \\ldots ,{\\mathcal{G}_{{\\text{r}} - {\\text{l}}}}} \\right.\\} $ of MOGS of Kn, n by G . In this paper, we compute two extensions N (n, G) = r ≥ 4, for n = 11, we have G = (4K1,2 ∪3K2), and n = 13, G will be (3K1,2 ∪7K2).","PeriodicalId":352371,"journal":{"name":"2021 International Conference on Electronic Engineering (ICEEM)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Construction Mutually Orthogonal Disjoint Unions of Small Certain Trees Graph Squares\",\"authors\":\"R. El-Shanawany, A. El-Rokh, S. Nada, E. Sallam\",\"doi\":\"10.1109/ICEEM52022.2021.9480661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A family of decompositions $\\\\mathcal{G} = \\\\left\\\\{ {{\\\\mathcal{G}_0},{\\\\mathcal{G}_1}, \\\\ldots \\\\ldots ,{\\\\mathcal{G}_{{\\\\text{r}} - {\\\\text{l}}}}} \\\\right.\\\\} $ of a complete bipartite graph Kn, n is a set of r mutually orthogonal graph squares (MOGS) if ${\\\\mathcal{G}_i}$ and ${\\\\mathcal{G}_j}$ are orthogonal for all i j, ∈{0, 1, … −, r 1}, and i ≠ j. For any subgraph G of Kn n, with n edges, N (n G, ) denotes the maximum number r in a largest possible set $\\\\mathcal{G} = \\\\left\\\\{ {{\\\\mathcal{G}_0},{\\\\mathcal{G}_1}, \\\\ldots \\\\ldots ,{\\\\mathcal{G}_{{\\\\text{r}} - {\\\\text{l}}}}} \\\\right.\\\\} $ of MOGS of Kn, n by G . In this paper, we compute two extensions N (n, G) = r ≥ 4, for n = 11, we have G = (4K1,2 ∪3K2), and n = 13, G will be (3K1,2 ∪7K2).\",\"PeriodicalId\":352371,\"journal\":{\"name\":\"2021 International Conference on Electronic Engineering (ICEEM)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Electronic Engineering (ICEEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEM52022.2021.9480661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electronic Engineering (ICEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEM52022.2021.9480661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

A family of decompositions mathcal {} = G \向左拐美元\ {{{G \ mathcal {} _0}, {G \ mathcal {} ldots \ ldots _1}, {G \ mathcal {} _ {{r \文本{}}-{\短信l {}}}}} coming right。\ of a美元的完整bipartite graph Kn, n是a set of r相互orthogonal graph广场(MOGS)如果G {\ mathcal {} _i美元的美元和G {\ mathcal {} _j美元的美元是orthogonal for all i j∈{0,1,...−1},r, G和i≠j。对于任何subgraph Kn的n和n edges, n (n G,) denotes maximum r当家》a最大可能套mathcal {} = G \向左拐美元\ {{{G \ mathcal {} _0}, {G \ mathcal {} ldots \ ldots _1},{\的G mathcal{}{{\文本{r}} -{\短信l {}}}}} coming right。oby MOGS, n by G。在这篇文章里,我们compute二号extensions N (N G) = r≥4,为N = 11,我们有G = (4K1,2∪3K2),和N = 13, G将(3K1,2∪7K2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Construction Mutually Orthogonal Disjoint Unions of Small Certain Trees Graph Squares
A family of decompositions $\mathcal{G} = \left\{ {{\mathcal{G}_0},{\mathcal{G}_1}, \ldots \ldots ,{\mathcal{G}_{{\text{r}} - {\text{l}}}}} \right.\} $ of a complete bipartite graph Kn, n is a set of r mutually orthogonal graph squares (MOGS) if ${\mathcal{G}_i}$ and ${\mathcal{G}_j}$ are orthogonal for all i j, ∈{0, 1, … −, r 1}, and i ≠ j. For any subgraph G of Kn n, with n edges, N (n G, ) denotes the maximum number r in a largest possible set $\mathcal{G} = \left\{ {{\mathcal{G}_0},{\mathcal{G}_1}, \ldots \ldots ,{\mathcal{G}_{{\text{r}} - {\text{l}}}}} \right.\} $ of MOGS of Kn, n by G . In this paper, we compute two extensions N (n, G) = r ≥ 4, for n = 11, we have G = (4K1,2 ∪3K2), and n = 13, G will be (3K1,2 ∪7K2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信