贝叶斯在线学习:具有rao - blackwell化的顺序蒙特卡罗

K. Yosui, T. Kurihara, K. Wada, T. Souma, Takashi Matsumoto
{"title":"贝叶斯在线学习:具有rao - blackwell化的顺序蒙特卡罗","authors":"K. Yosui, T. Kurihara, K. Wada, T. Souma, Takashi Matsumoto","doi":"10.1109/NNSP.2002.1030021","DOIUrl":null,"url":null,"abstract":"This paper proposes a Rao-Blackwellised sequential Monte Carlo (RBSMC) scheme for on-line learning with feedforward neural nets. The proposed algorithm is tested against an example and the performance is compared with those of the conventional sequential Monte Carlo as well as the extended Kalman filter (EKF). The proposed scheme outperforms those conventional algorithms.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"42 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Bayesian on-line learning: a sequential Monte Carlo with Rao-Blackwellization\",\"authors\":\"K. Yosui, T. Kurihara, K. Wada, T. Souma, Takashi Matsumoto\",\"doi\":\"10.1109/NNSP.2002.1030021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a Rao-Blackwellised sequential Monte Carlo (RBSMC) scheme for on-line learning with feedforward neural nets. The proposed algorithm is tested against an example and the performance is compared with those of the conventional sequential Monte Carlo as well as the extended Kalman filter (EKF). The proposed scheme outperforms those conventional algorithms.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"42 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种用于前馈神经网络在线学习的rao - blackwell化序贯蒙特卡罗(RBSMC)方案。通过实例验证了该算法的性能,并与传统的时序蒙特卡罗滤波和扩展卡尔曼滤波(EKF)进行了比较。该方案优于传统算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian on-line learning: a sequential Monte Carlo with Rao-Blackwellization
This paper proposes a Rao-Blackwellised sequential Monte Carlo (RBSMC) scheme for on-line learning with feedforward neural nets. The proposed algorithm is tested against an example and the performance is compared with those of the conventional sequential Monte Carlo as well as the extended Kalman filter (EKF). The proposed scheme outperforms those conventional algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信