{"title":"多目标聚类集成","authors":"Katti Faceli, A. Carvalho, M. D. Souto","doi":"10.1109/HIS.2006.49","DOIUrl":null,"url":null,"abstract":"In this paper, we present an algorithm for cluster analysis that provides a robust way to deal with datasets presenting different types of clusters and allows finding more than one structure in a dataset. Our approach is based on ideas from cluster ensembles and multi-objective clustering. We apply a Pareto-based multi-objective genetic algorithm with a special crossover operator. Such an operator combines a number of partitions obtained according to different clustering criteria. As a result, our approach generates a concise and stable set of partitions representing different trade-offs between two validation measures related to different clustering criteria.","PeriodicalId":150732,"journal":{"name":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"Multi-Objective Clustering Ensemble\",\"authors\":\"Katti Faceli, A. Carvalho, M. D. Souto\",\"doi\":\"10.1109/HIS.2006.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an algorithm for cluster analysis that provides a robust way to deal with datasets presenting different types of clusters and allows finding more than one structure in a dataset. Our approach is based on ideas from cluster ensembles and multi-objective clustering. We apply a Pareto-based multi-objective genetic algorithm with a special crossover operator. Such an operator combines a number of partitions obtained according to different clustering criteria. As a result, our approach generates a concise and stable set of partitions representing different trade-offs between two validation measures related to different clustering criteria.\",\"PeriodicalId\":150732,\"journal\":{\"name\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2006.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2006.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we present an algorithm for cluster analysis that provides a robust way to deal with datasets presenting different types of clusters and allows finding more than one structure in a dataset. Our approach is based on ideas from cluster ensembles and multi-objective clustering. We apply a Pareto-based multi-objective genetic algorithm with a special crossover operator. Such an operator combines a number of partitions obtained according to different clustering criteria. As a result, our approach generates a concise and stable set of partitions representing different trade-offs between two validation measures related to different clustering criteria.