多目标聚类集成

Katti Faceli, A. Carvalho, M. D. Souto
{"title":"多目标聚类集成","authors":"Katti Faceli, A. Carvalho, M. D. Souto","doi":"10.1109/HIS.2006.49","DOIUrl":null,"url":null,"abstract":"In this paper, we present an algorithm for cluster analysis that provides a robust way to deal with datasets presenting different types of clusters and allows finding more than one structure in a dataset. Our approach is based on ideas from cluster ensembles and multi-objective clustering. We apply a Pareto-based multi-objective genetic algorithm with a special crossover operator. Such an operator combines a number of partitions obtained according to different clustering criteria. As a result, our approach generates a concise and stable set of partitions representing different trade-offs between two validation measures related to different clustering criteria.","PeriodicalId":150732,"journal":{"name":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"Multi-Objective Clustering Ensemble\",\"authors\":\"Katti Faceli, A. Carvalho, M. D. Souto\",\"doi\":\"10.1109/HIS.2006.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an algorithm for cluster analysis that provides a robust way to deal with datasets presenting different types of clusters and allows finding more than one structure in a dataset. Our approach is based on ideas from cluster ensembles and multi-objective clustering. We apply a Pareto-based multi-objective genetic algorithm with a special crossover operator. Such an operator combines a number of partitions obtained according to different clustering criteria. As a result, our approach generates a concise and stable set of partitions representing different trade-offs between two validation measures related to different clustering criteria.\",\"PeriodicalId\":150732,\"journal\":{\"name\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2006.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2006.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

摘要

在本文中,我们提出了一种聚类分析算法,该算法提供了一种鲁棒的方法来处理呈现不同类型聚类的数据集,并允许在数据集中发现多个结构。我们的方法基于聚类集成和多目标聚类的思想。我们应用了一种基于pareto的多目标遗传算法,该算法带有一个特殊的交叉算子。这样的操作符结合了根据不同聚类标准获得的多个分区。因此,我们的方法生成了一组简洁而稳定的分区,表示与不同聚类标准相关的两个验证度量之间的不同权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Objective Clustering Ensemble
In this paper, we present an algorithm for cluster analysis that provides a robust way to deal with datasets presenting different types of clusters and allows finding more than one structure in a dataset. Our approach is based on ideas from cluster ensembles and multi-objective clustering. We apply a Pareto-based multi-objective genetic algorithm with a special crossover operator. Such an operator combines a number of partitions obtained according to different clustering criteria. As a result, our approach generates a concise and stable set of partitions representing different trade-offs between two validation measures related to different clustering criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信