Sheikh Faisal Rashid, M. Schambach, J. Rottland, Stephan von der Nüll
{"title":"基于多维递归神经网络的低分辨率阿拉伯语识别","authors":"Sheikh Faisal Rashid, M. Schambach, J. Rottland, Stephan von der Nüll","doi":"10.1145/2505377.2505385","DOIUrl":null,"url":null,"abstract":"OCR of multi-font Arabic text is difficult due to large variations in character shapes from one font to another. It becomes even more challenging if the text is rendered at very low resolution. This paper describes a multi-font, low resolution, and open vocabulary OCR system based on a multidimensional recurrent neural network architecture. For this work, we have developed various systems, trained for single-font/single-size, single-font/multi-size, and multi-font/multi-size data of the well known Arabic printed text image database (APTI). The evaluation tasks from the second Arabic text recognition competition, organized in conjunction with ICDAR 2013, have been adopted. Ten Arabic fonts in six font size categories are used for evaluation. Results show that the proposed method performs very well on the task of printed Arabic text recognition even for very low resolution and small font size images. Overall, the system yields above 99% recognition accuracy at character and word level for most of the printed Arabic fonts.","PeriodicalId":288465,"journal":{"name":"MOCR '13","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Low resolution Arabic recognition with multidimensional recurrent neural networks\",\"authors\":\"Sheikh Faisal Rashid, M. Schambach, J. Rottland, Stephan von der Nüll\",\"doi\":\"10.1145/2505377.2505385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OCR of multi-font Arabic text is difficult due to large variations in character shapes from one font to another. It becomes even more challenging if the text is rendered at very low resolution. This paper describes a multi-font, low resolution, and open vocabulary OCR system based on a multidimensional recurrent neural network architecture. For this work, we have developed various systems, trained for single-font/single-size, single-font/multi-size, and multi-font/multi-size data of the well known Arabic printed text image database (APTI). The evaluation tasks from the second Arabic text recognition competition, organized in conjunction with ICDAR 2013, have been adopted. Ten Arabic fonts in six font size categories are used for evaluation. Results show that the proposed method performs very well on the task of printed Arabic text recognition even for very low resolution and small font size images. Overall, the system yields above 99% recognition accuracy at character and word level for most of the printed Arabic fonts.\",\"PeriodicalId\":288465,\"journal\":{\"name\":\"MOCR '13\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MOCR '13\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2505377.2505385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MOCR '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505377.2505385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low resolution Arabic recognition with multidimensional recurrent neural networks
OCR of multi-font Arabic text is difficult due to large variations in character shapes from one font to another. It becomes even more challenging if the text is rendered at very low resolution. This paper describes a multi-font, low resolution, and open vocabulary OCR system based on a multidimensional recurrent neural network architecture. For this work, we have developed various systems, trained for single-font/single-size, single-font/multi-size, and multi-font/multi-size data of the well known Arabic printed text image database (APTI). The evaluation tasks from the second Arabic text recognition competition, organized in conjunction with ICDAR 2013, have been adopted. Ten Arabic fonts in six font size categories are used for evaluation. Results show that the proposed method performs very well on the task of printed Arabic text recognition even for very low resolution and small font size images. Overall, the system yields above 99% recognition accuracy at character and word level for most of the printed Arabic fonts.