基于遗传算法的平面机构综合性能优化

E. Lugo-González, L. Hernández-Gómez, R. Ponce-Reynoso, A. T. Velázquez-Sánchez, G. Urriolagoitia-Sosa, E. A. Merchán-Cruz, J. Ramírez-Gordillo
{"title":"基于遗传算法的平面机构综合性能优化","authors":"E. Lugo-González, L. Hernández-Gómez, R. Ponce-Reynoso, A. T. Velázquez-Sánchez, G. Urriolagoitia-Sosa, E. A. Merchán-Cruz, J. Ramírez-Gordillo","doi":"10.1109/CERMA.2010.26","DOIUrl":null,"url":null,"abstract":"This paper present the analysis of the manipulation of some parameters to improve the performance of genetic algorithm based planar mechanism synthesis, such as the mutation and crossover probability and the population size, applied to a specific case of dimensional optimization, to obtain the best results for a group of design variables that achieve the best performance in the design of planar mechanisms, whose evaluation is expressed by means of an objective function that has to meet certain restrictions or requirements to minimize the error between the desired and generated trajectory of the coupler link, since the objective of path generation is to find the mechanism that properly describes the desired curve in shape, size, orientation and position. Two examples are given for illustration, for which the mentioned parameters are manipulated to see the effects of these on the final result for the minimization of the error and the value of variables involved in the dimensions of the links and the motion angles.","PeriodicalId":119218,"journal":{"name":"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance Optimization of GA Based Planar Mechanism Synthesis\",\"authors\":\"E. Lugo-González, L. Hernández-Gómez, R. Ponce-Reynoso, A. T. Velázquez-Sánchez, G. Urriolagoitia-Sosa, E. A. Merchán-Cruz, J. Ramírez-Gordillo\",\"doi\":\"10.1109/CERMA.2010.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper present the analysis of the manipulation of some parameters to improve the performance of genetic algorithm based planar mechanism synthesis, such as the mutation and crossover probability and the population size, applied to a specific case of dimensional optimization, to obtain the best results for a group of design variables that achieve the best performance in the design of planar mechanisms, whose evaluation is expressed by means of an objective function that has to meet certain restrictions or requirements to minimize the error between the desired and generated trajectory of the coupler link, since the objective of path generation is to find the mechanism that properly describes the desired curve in shape, size, orientation and position. Two examples are given for illustration, for which the mentioned parameters are manipulated to see the effects of these on the final result for the minimization of the error and the value of variables involved in the dimensions of the links and the motion angles.\",\"PeriodicalId\":119218,\"journal\":{\"name\":\"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CERMA.2010.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2010.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文分析了利用遗传算法提高平面机构综合性能的一些参数,如变异和交叉概率以及总体大小,并将其应用于具体的尺寸优化案例,以获得一组设计变量的最佳结果,从而在平面机构设计中达到最佳性能。其评价是通过一个目标函数来表示的,该目标函数必须满足一定的限制或要求,以使期望的连杆轨迹与生成的轨迹之间的误差最小,因为路径生成的目标是找到在形状、尺寸、方向和位置上适当描述期望曲线的机构。为了说明,给出了两个例子,对上述参数进行了操作,以查看这些参数对最终结果的影响,以最小化误差和涉及链接尺寸和运动角度的变量值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Optimization of GA Based Planar Mechanism Synthesis
This paper present the analysis of the manipulation of some parameters to improve the performance of genetic algorithm based planar mechanism synthesis, such as the mutation and crossover probability and the population size, applied to a specific case of dimensional optimization, to obtain the best results for a group of design variables that achieve the best performance in the design of planar mechanisms, whose evaluation is expressed by means of an objective function that has to meet certain restrictions or requirements to minimize the error between the desired and generated trajectory of the coupler link, since the objective of path generation is to find the mechanism that properly describes the desired curve in shape, size, orientation and position. Two examples are given for illustration, for which the mentioned parameters are manipulated to see the effects of these on the final result for the minimization of the error and the value of variables involved in the dimensions of the links and the motion angles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信