使用机器学习技术的文本反馈分类

Dr. E.Elakiya, Dr. S. Deepa Nivethika, Dr. R. Kanagaraj, Dr.R.Sujithra, Tejus Paturu, Student
{"title":"使用机器学习技术的文本反馈分类","authors":"Dr. E.Elakiya, Dr. S. Deepa Nivethika, Dr. R. Kanagaraj, Dr.R.Sujithra, Tejus Paturu, Student","doi":"10.1109/ICECAA58104.2023.10212398","DOIUrl":null,"url":null,"abstract":"The popularity of online shopping has grown worldwide, making it an integral part of many people's lives. As customers are free to express their emotions online, online sales have become a significant source of revenue. This enables obtaining honest feedback for various products, helping to understand not only what is popular but also the overall consensus. To make sense of the large amounts of product feedback and gauge the public's response, it is important to understand the widely held sentiments. Machine learning models provide a solution to extract feedback from text. Random Forest classifier produces the highest accuracy of 88 percentage.","PeriodicalId":114624,"journal":{"name":"2023 2nd International Conference on Edge Computing and Applications (ICECAA)","volume":"93 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Text Feedback Classification using Machine Learning Techniques\",\"authors\":\"Dr. E.Elakiya, Dr. S. Deepa Nivethika, Dr. R. Kanagaraj, Dr.R.Sujithra, Tejus Paturu, Student\",\"doi\":\"10.1109/ICECAA58104.2023.10212398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The popularity of online shopping has grown worldwide, making it an integral part of many people's lives. As customers are free to express their emotions online, online sales have become a significant source of revenue. This enables obtaining honest feedback for various products, helping to understand not only what is popular but also the overall consensus. To make sense of the large amounts of product feedback and gauge the public's response, it is important to understand the widely held sentiments. Machine learning models provide a solution to extract feedback from text. Random Forest classifier produces the highest accuracy of 88 percentage.\",\"PeriodicalId\":114624,\"journal\":{\"name\":\"2023 2nd International Conference on Edge Computing and Applications (ICECAA)\",\"volume\":\"93 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 2nd International Conference on Edge Computing and Applications (ICECAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECAA58104.2023.10212398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Edge Computing and Applications (ICECAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECAA58104.2023.10212398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

网上购物在全球范围内越来越受欢迎,使其成为许多人生活中不可或缺的一部分。由于顾客可以在网上自由表达自己的情感,网上销售已经成为一个重要的收入来源。这样可以获得各种产品的真实反馈,不仅有助于了解流行产品,还有助于了解总体共识。为了理解大量的产品反馈并衡量公众的反应,理解广泛持有的情绪是很重要的。机器学习模型提供了从文本中提取反馈的解决方案。随机森林分类器的准确率最高,达到88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text Feedback Classification using Machine Learning Techniques
The popularity of online shopping has grown worldwide, making it an integral part of many people's lives. As customers are free to express their emotions online, online sales have become a significant source of revenue. This enables obtaining honest feedback for various products, helping to understand not only what is popular but also the overall consensus. To make sense of the large amounts of product feedback and gauge the public's response, it is important to understand the widely held sentiments. Machine learning models provide a solution to extract feedback from text. Random Forest classifier produces the highest accuracy of 88 percentage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信