注意:编译器的非功能测试框架

M. Boussaa, Olivier Barais, B. Baudry, G. Sunyé
{"title":"注意:编译器的非功能测试框架","authors":"M. Boussaa, Olivier Barais, B. Baudry, G. Sunyé","doi":"10.1109/QRS.2016.45","DOIUrl":null,"url":null,"abstract":"Generally, compiler users apply different optimizations to generate efficient code with respect to non-functional properties such as energy consumption, execution time, etc. However, due to the huge number of optimizations provided by modern compilers, finding the best optimization sequence for a specific objective and a given program is more and more challenging. This paper proposes NOTICE, a component-based framework for non-functional testing of compilers through the monitoring of generated code in a controlled sand-boxing environment. We evaluate the effectiveness of our approach by verifying the optimizations performed by the GCC compiler. Our experimental results show that our approach is able to auto-tune compilers according to user requirements and construct optimizations that yield to better performance results than standard optimization levels. We also demonstrate that NOTICE can be used to automatically construct optimization levels that represent optimal trade-offs between multiple non-functional properties such as execution time and resource usage requirements.","PeriodicalId":412973,"journal":{"name":"2016 IEEE International Conference on Software Quality, Reliability and Security (QRS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"NOTICE: A Framework for Non-Functional Testing of Compilers\",\"authors\":\"M. Boussaa, Olivier Barais, B. Baudry, G. Sunyé\",\"doi\":\"10.1109/QRS.2016.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generally, compiler users apply different optimizations to generate efficient code with respect to non-functional properties such as energy consumption, execution time, etc. However, due to the huge number of optimizations provided by modern compilers, finding the best optimization sequence for a specific objective and a given program is more and more challenging. This paper proposes NOTICE, a component-based framework for non-functional testing of compilers through the monitoring of generated code in a controlled sand-boxing environment. We evaluate the effectiveness of our approach by verifying the optimizations performed by the GCC compiler. Our experimental results show that our approach is able to auto-tune compilers according to user requirements and construct optimizations that yield to better performance results than standard optimization levels. We also demonstrate that NOTICE can be used to automatically construct optimization levels that represent optimal trade-offs between multiple non-functional properties such as execution time and resource usage requirements.\",\"PeriodicalId\":412973,\"journal\":{\"name\":\"2016 IEEE International Conference on Software Quality, Reliability and Security (QRS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Software Quality, Reliability and Security (QRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS.2016.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS.2016.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

通常,编译器用户会针对非功能属性(如能耗、执行时间等)应用不同的优化来生成高效的代码。然而,由于现代编译器提供了大量的优化,为特定目标和给定程序找到最佳优化序列越来越具有挑战性。本文提出了NOTICE,这是一个基于组件的框架,通过在受控沙盒环境中监控生成的代码来进行编译器的非功能测试。我们通过验证GCC编译器执行的优化来评估我们方法的有效性。我们的实验结果表明,我们的方法能够根据用户需求自动调优编译器,并构建比标准优化级别产生更好性能结果的优化。我们还演示了NOTICE可用于自动构建优化级别,这些级别表示多个非功能属性(如执行时间和资源使用需求)之间的最佳权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NOTICE: A Framework for Non-Functional Testing of Compilers
Generally, compiler users apply different optimizations to generate efficient code with respect to non-functional properties such as energy consumption, execution time, etc. However, due to the huge number of optimizations provided by modern compilers, finding the best optimization sequence for a specific objective and a given program is more and more challenging. This paper proposes NOTICE, a component-based framework for non-functional testing of compilers through the monitoring of generated code in a controlled sand-boxing environment. We evaluate the effectiveness of our approach by verifying the optimizations performed by the GCC compiler. Our experimental results show that our approach is able to auto-tune compilers according to user requirements and construct optimizations that yield to better performance results than standard optimization levels. We also demonstrate that NOTICE can be used to automatically construct optimization levels that represent optimal trade-offs between multiple non-functional properties such as execution time and resource usage requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信